Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Jul;74(7):2739–2741. doi: 10.1073/pnas.74.7.2739

Enzymes as reagents in peptide synthesis: enzyme-labile protection for carboxyl groups.

J Glass, M Pelzig
PMCID: PMC431270  PMID: 268623

Abstract

N-Benzyloxycarbonyl derivatives of isoglutamine and isoasparagine were coupled with arginine methyl ester through the action of dicyclohexylcarbodiimide. The resulting benzyloxycarbonyl derivatives of isoglutaminylarginine methyl ester and isoasparaginylarginine methyl ester were treated with trypsin for removal of the ester groups and then with porcine pancreatic carboxypeptidase B for liberation of arginine and the original benzyloxycarbonyl derivatives of isoglutamine and isoasparagine. This scheme represents a reversible masking of the side-chain carboxyl functions of aspartic and glutamic acid residues. Possible applications of esters and amides of arginine as reversible blocking groups in protein semi-synthesis are discussed along with prospects and strategies for developing related techniques of higher efficiency.

Full text

PDF
2739

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BREITENBACH J. W., DERKOSCH J., WESSELY F. Energetics of peptide formation. Nature. 1952 May 31;169(4309):922–922. doi: 10.1038/169922a0. [DOI] [PubMed] [Google Scholar]
  2. CHIBNALL A. C., MANGAN J. L., REES M. W. Studies on the amide and C-terminal residues in proteins. 3. The esterification of proteins. Biochem J. 1958 Jan;68(1):114–118. doi: 10.1042/bj0680114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DIXON H. B., STACK-DUNNE M. P. Chromatographic studies on corticotropin. Biochem J. 1955 Nov;61(3):483–495. doi: 10.1042/bj0610483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dixon H. B., Perham R. N. Reversible blocking of amino groups with citraconic anhydride. Biochem J. 1968 Sep;109(2):312–314. doi: 10.1042/bj1090312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FOLK J. E., WOLFF E. C., SCHIRMER E. W., CORNFIELD J. The kinetics of carboxypeptidase B activity. III. Effects of alcohol on the peptidase and esterase activities; kinetic models. J Biol Chem. 1962 Oct;237:3105–3109. [PubMed] [Google Scholar]
  6. FOLK J. E., WOLFF E. C., SCHIRMER E. W. The kinetics of carboxypeptidase B activity. II. Kinetic parameters of the cobalt and cadmium enzymes. J Biol Chem. 1962 Oct;237:3100–3104. [PubMed] [Google Scholar]
  7. König W., Geiger R. Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexycarbodiimid unter Zusatz von 1-Hydroxy-benzotriazolen. Chem Ber. 1970;103(3):788–798. doi: 10.1002/cber.19701030319. [DOI] [PubMed] [Google Scholar]
  8. Offord R. E. Protection of peptides of biological origin for use as intermediates in the chemical synthesis of proteins. Nature. 1969 Jan 4;221(5175):37–40. doi: 10.1038/221037a0. [DOI] [PubMed] [Google Scholar]
  9. Patthy L., Smith E. L. Reversible modification of arginine residues. Application to sequence studies by restriction of tryptic hydrolysis to lysine residues. J Biol Chem. 1975 Jan 25;250(2):557–564. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES