Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Nov;73(11):4060–4064. doi: 10.1073/pnas.73.11.4060

Relationship of gangliosides to the structure and function of thyrotropin receptors: their absence on plasma membranes of a thyroid tumor defective in thyrotropin receptor activity.

P H Fishman, S M Aloj, L D Kohn, R O Brady
PMCID: PMC431327  PMID: 186783

Abstract

Plasma membranes derived from rat thyroid tumor (1-8R) which is unresponsive to thyrotropin but is responsive to dibutyryl adenosine 3':5'-cyclic monophosphate bind less than 20% of the [125I] thyrotropin which can be bound to plasma membranes from normal rat thyroids under conditions which optimize tumor membrane binding relative to normal thyroid membranes. In addition, the binding is different from thyrotropin binding to normal thyroid membranes both in its altered sensitivity to changes in hydrogen ion concentration and in a decreased sensitivity to competition by unlabeled thyrotropin. This reduced capacity to bind [125I] thyrotropin cannot be attributed to degradation of the hormone by membrane-associated proteases. Although the supernatant phase of the thyroid tumor homogenates contains a soluble component which inhibits [125I] thyrotropin binding to thyrotropin receptors on plasma membranes, its level is the same as in homogenates of normal thyroid tissue. Trypsin digestion does not expose thyrotropin receptors in a manner analogous to that seen in normal thyroid tissue. The major ganglioside in the tumor membranes is N-acetylneuraminylgalactosylglucosylceramide and the membranes lack the N-acetylgalactosaminyltransferase required for the synthesis of more complex gangliosides. In contrast, the normal rat thyroid membranes contain more complex gangliosides such as galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide and N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide as well as the glycosyltransferase activities required for their syntheses. Galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide can also be detected in normal membranes, but not in tumor membranes, by selective labeling with galactose oxidase (D-galactose: oxygen 6-oxidoreductase, EC 1.1.3.9) and [3H] sodium borohydride. These results support the hypothesis that gangliosides are important structural or functional components of thyrotropin receptors on thyroid plasma membranes.

Full text

PDF
4060

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amir S. M., Carraway T. F., Jr, Kohn L. D., Winand R. J. The binding of thyrotropin to isolated bovine thyroid plasma membranes. J Biol Chem. 1973 Jun 10;248(11):4092–4100. [PubMed] [Google Scholar]
  2. Bolonkin D., Tate R. L., Luber J. H., Kohn L. D., Winand R. J. Experimental exophthalmos. Binding of thyrotropin and an exophthalmogenic factor derived from thyrotropin to retro-orbital tissue plasma membranes. J Biol Chem. 1975 Aug 25;250(16):6516–6521. [PubMed] [Google Scholar]
  3. Brady R. O., Fishman P. H. Biosynthesis of glycolipids in virus-transformed cells. Biochim Biophys Acta. 1974 Sep 9;355(2):121–148. doi: 10.1016/0304-419x(74)90001-8. [DOI] [PubMed] [Google Scholar]
  4. Den H., Sela B. A., Roseman S., Sachs L. Blocks in ganglioside synthesis in transformed hamster cells and their revertants. J Biol Chem. 1974 Jan 25;249(2):659–661. [PubMed] [Google Scholar]
  5. Fishman P. H., Bradley R. M., Henneberry R. C. Butyrate-induced glycolipid biosynthesis in HeLa cells: properties of the induced sialyltransferase. Arch Biochem Biophys. 1976 Feb;172(2):618–626. doi: 10.1016/0003-9861(76)90116-8. [DOI] [PubMed] [Google Scholar]
  6. Fishman P. H., Moss J., Vaughan M. Uptake and metabolism of gangliosides in transformed mouse fibroblasts. Relationship of ganglioside structure to choleragen response. J Biol Chem. 1976 Aug 10;251(15):4490–4494. [PubMed] [Google Scholar]
  7. Kohn L. D., Winand R. J. Relationship of thyrotropin to exophthalmos-producing substance. Formation of an exophthalmos-producing substance by pepsin digestion of pituitary glycoproteins containing both thyrotropic and exophthalmogenic activity. J Biol Chem. 1971 Nov;246(21):6570–6575. [PubMed] [Google Scholar]
  8. Langenbach R. Gangliosides of chemically and virally transformed rat embryo cells. Biochim Biophys Acta. 1975 May 22;388(2):231–242. doi: 10.1016/0005-2760(75)90128-9. [DOI] [PubMed] [Google Scholar]
  9. Ledley F. D., Mullin B. R., Lee G., Aloj S. M., Fishman P. H., Hunt L. T., Dayhoff M. O., Kohn L. D. Sequence similarity between cholera toxin and glycoprotein hormones: implications for structure activity relationship and mechanism of action. Biochem Biophys Res Commun. 1976 Apr 19;69(4):852–859. doi: 10.1016/0006-291x(76)90452-6. [DOI] [PubMed] [Google Scholar]
  10. Macchia V., Meldolesi M. F. Cell membrane of thyroid and its altered responsiveness to the hormone TSH. Adv Cytopharmacol. 1974;2:33–37. [PubMed] [Google Scholar]
  11. Macchia V., Meldolesi M. F., Chiariello M. Adenyl-cyclase in a transplantable thyroid tumor: loss of ability to respond to TSH. Endocrinology. 1972 Jun;90(6):1483–1491. doi: 10.1210/endo-90-6-1483. [DOI] [PubMed] [Google Scholar]
  12. Mandato E., Meldolesi M. F., Macchia V. Diminished binding of thyroid-stimulating hormone in a transplantable rat thyroid tumor as a possible cause of hormone unresponsiveness. Cancer Res. 1975 Nov;35(11 Pt 1):3089–3093. [PubMed] [Google Scholar]
  13. Mullin B. R., Aloj S. M., Fishman P. H., Lee G., Kohn L. D., Brady R. O. Cholera toxin interactions with thyrotropin receptors on thyroid plasma membranes. Proc Natl Acad Sci U S A. 1976 May;73(5):1679–1683. doi: 10.1073/pnas.73.5.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mullin B. R., Fishman P. H., Lee G., Aloj S. M., Ledley F. D., Winand R. J., Kohn L. D., Brady R. O. Thyrotropin-ganglioside interactions and their relationship to the structure and function of thyrotropin receptors. Proc Natl Acad Sci U S A. 1976 Mar;73(3):842–846. doi: 10.1073/pnas.73.3.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mullin B. R., Lee G., Ledley F. D., Winland R. J., Kohn L. D. Thyrotropin interactions with human fat cell membrane preparations and the finding of soluble thyrotropin binding component. Biochem Biophys Res Commun. 1976 Mar 8;69(1):55–62. doi: 10.1016/s0006-291x(76)80271-9. [DOI] [PubMed] [Google Scholar]
  16. Simmons J. L., Fishman P. H., Freese E., Brady R. O. Morphological alterations and ganglioside sialyltransferase activity induced by small fatty acids in HeLa cells. J Cell Biol. 1975 Aug;66(2):414–424. doi: 10.1083/jcb.66.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tate R. L., Holmes J. M., Kohn L. D., Winand R. J. Characteristics of a solubilized thyrotropin receptor from bovine thyroid plasma membranes. J Biol Chem. 1975 Aug 25;250(16):6527–6533. [PubMed] [Google Scholar]
  18. Tate R. L., Schwartz H. I., Holmes J. M., Kohn L. D. Thyrotropin receptors in thyroid plasma membranes. Characteristics of thyrotropin binding and solubilization of thyrotropin receptor activity by tryptic digestion. J Biol Chem. 1975 Aug 25;250(16):6509–6515. [PubMed] [Google Scholar]
  19. WOLLMAN S. H. PRODUCTION AND PROPERTIES OF TRANSPLANTABLE TUMORS OF THE THYROID GLAND IN THE FISCHER RAT. Recent Prog Horm Res. 1963;19:579–618. [PubMed] [Google Scholar]
  20. Winand R. J., Kohn L. D. Relationships of thyrotropin to exophthalmic-producing substance. Purification of homogeneous glycoproteins containing both activities from [3H]-labeled pituitary extracts. J Biol Chem. 1970 Mar 10;245(5):967–975. [PubMed] [Google Scholar]
  21. Winand R. J., Kohn L. D. The binding of ( 3 H)thyrotropin and an 3 H-labeled exophthalmogenic factor by plasma membranes of retro-orbital tissue. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1711–1715. doi: 10.1073/pnas.69.7.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Winand R. J., Kohn L. D. Thyrotropin effects on thyroid cells in culture. Effects of trypsin on the thyrotropin receptor and on thyrotropin-mediated cyclic 3':5'-AMP changes. J Biol Chem. 1975 Aug 25;250(16):6534–6540. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES