Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Nov;73(11):4230–4234. doi: 10.1073/pnas.73.11.4230

Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique.

C Kennedy, M H Des Rosiers, O Sakurada, M Shinohara, M Reivich, J W Jehle, L Sokoloff
PMCID: PMC431397  PMID: 825861

Abstract

An autoradiographic technique that employs 2-[14-C]deoxyglucose to measure the local rates of glucose utilization within the brain has been applied to the binocular visual system of the Macaque monkey. This method, which pictorially displays the relative rates of glucose consumption in the component structures of the brain, delineates the regions of altered functional activity because of the close relationship between functional activity and energy metabolism. Bilateral retinal stimulation results in the delineation of different rates of glucose consumption in at least four cytoarchitectural layers of the striate cortex. The most intense metabolic activity appears to be in Layer IV, the locus of the termination of the geniculocortical pathway. Bilateral visual occlusion lowers the rates of glucoes consumption in striate cortex and markedly reduces the metabolic differentiation of the various layers. Unilateral visual deprivation delineates the laminae of the lateral geniculate body and the ocular dominance columns of the striate cortex. It also results in the autoradiographic visualization of regions with normally monocular input in the striate cortex, such as the rostral portions of the mushroom-like configurations in the calcarine cortex, which represent the extreme temporal crescents of the visual fields, and small regions in the most caudal part of the mushroom configurations, which are believed to represent the cortical loci of the blind spotsof the visual fields.

Full text

PDF
4230

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DANIEL P. M., WHITTERIDGE D. The representation of the visual field on the cerebral cortex in monkeys. J Physiol. 1961 Dec;159:203–221. doi: 10.1113/jphysiol.1961.sp006803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Garey L. J., Powell T. P. An experimental study of the termination of the lateral geniculo-cortical pathway in the cat and monkey. Proc R Soc Lond B Biol Sci. 1971 Oct 12;179(1054):41–63. doi: 10.1098/rspb.1971.0080. [DOI] [PubMed] [Google Scholar]
  3. Grafstein B., Laureno R. Transport of radioactivity from eye to visual cortex in the mouse. Exp Neurol. 1973 Apr;39(1):44–57. doi: 10.1016/0014-4886(73)90040-x. [DOI] [PubMed] [Google Scholar]
  4. Grafstein B. Transneuronal transfer of radioactivity in the central nervous system. Science. 1971 Apr 9;172(3979):177–179. doi: 10.1126/science.172.3979.177. [DOI] [PubMed] [Google Scholar]
  5. Hubel D. H., Wiesel T. N. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol. 1972 Dec;146(4):421–450. doi: 10.1002/cne.901460402. [DOI] [PubMed] [Google Scholar]
  6. Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kennedy C., Des Rosiers M. H., Jehle J. W., Reivich M., Sharpe F., Sokoloff L. Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with (14C)deoxyglucose. Science. 1975 Mar 7;187(4179):850–853. doi: 10.1126/science.1114332. [DOI] [PubMed] [Google Scholar]
  8. LeVay S., Hubel D. H., Wiesel T. N. The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J Comp Neurol. 1975 Feb 15;159(4):559–576. doi: 10.1002/cne.901590408. [DOI] [PubMed] [Google Scholar]
  9. Rakic P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature. 1976 Jun 10;261(5560):467–471. doi: 10.1038/261467a0. [DOI] [PubMed] [Google Scholar]
  10. Wiesel T. N., Hubel D. H., Lam D. M. Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res. 1974 Oct 18;79(2):273–279. doi: 10.1016/0006-8993(74)90416-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES