Abstract
Active Li efflux from human erythrocytes was shown to be mediated by the Na/K pump: (i) intracellular Li (Lic) activated ouabain-sensitive K influx, and (ii) a portion of the Li efflux required external K and was inhibited by ouabain. In activating K influx, Lic interacts with the pump like Na rather than like K—depleting the cells of orthophosphate inhibited activation of K influx by intracellular K (K/K exchange) but did not inhibit Li-activated K influx. (To show these interactions of Lic with the Na/K pump, p-chloromercuribenzenesulfonate or nystatin was used to allow replacement of intracellular Na and K with Li and choline.) From kinetic studies of the pump, it was shown that the apparent affinity of the intracellular aspect of the Na/K pump for Li was an order of magnitude less than that for Na. From simultaneous measurements of ouabain-sensitive net fluxes of Li and K in Na-free cells, it was shown that the pump-mediated K influx and Li efflux were coupled. The stoichiometry of the coupling ratio was close to 1:1 for Li:K, different from the coupling ratio of 3:2 for Na:K in the pump's normal mode of operation. It had been shown previously that the Na/K pump in human erythrocytes mediates active Li influx. Because it also mediates active Li efflux, the molecular mechanisms for distinguishing between Na and K must be qualitatively different at the internal and external aspects of the pump. The possible relevance of the results of this study to manic depressive illness and Li therapy is discussed.
Keywords: cation transport, erythrocyte membranes, manic depression
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beaugé L. A., Del Campillo E. The ATP dependence of a ouabain-sensitive sodium efflux activated by external sodium, potassium and lithium in human red cells. Biochim Biophys Acta. 1976 May 21;433(3):547–554. doi: 10.1016/0005-2736(76)90280-7. [DOI] [PubMed] [Google Scholar]
 - Beaugé L. A., Ortíz O. Rubidium, sodium and ouabain interactions on the influx of rubidium in rat red blood cells. J Physiol. 1970 Oct;210(3):519–532. doi: 10.1113/jphysiol.1970.sp009224. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Casper R. C., Pandey G., Gosenfeld L., Davis J. M. Intracellular lithium and clinical response. Lancet. 1976 Aug 21;2(7982):418–419. doi: 10.1016/s0140-6736(76)92433-8. [DOI] [PubMed] [Google Scholar]
 - Duhm J., Eisenried F., Becker B. F., Greil W. Studies on the lithium transport across the red cell membrane. I. Li+ uphill transport by the Na+-dependent Li+ counter-transport system of human erythrocytes. Pflugers Arch. 1976 Jul 30;364(2):147–155. doi: 10.1007/BF00585183. [DOI] [PubMed] [Google Scholar]
 - Dunham P. B., Blostein R. Active potassium transport in reticulocytes of high-K+ and low-K+ sheep. Biochim Biophys Acta. 1976 Dec 14;455(3):749–758. doi: 10.1016/0005-2736(76)90045-6. [DOI] [PubMed] [Google Scholar]
 - FLYNN F., MAIZELS M. Cation control in human erythrocytes. J Physiol. 1949 Dec;110(3-4):301–318. doi: 10.1113/jphysiol.1949.sp004440. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Fieve R. R., Kumbaraci T., Dunner D. L. Lithium prophylaxis of depression in bipolar I, bipolar II, and unipolar patients. Am J Psychiatry. 1976 Aug;133(8):925–929. doi: 10.1176/ajp.133.8.925. [DOI] [PubMed] [Google Scholar]
 - Garrahan P. J., Glynn I. M. The behaviour of the sodium pump in red cells in the absence of external potassium. J Physiol. 1967 Sep;192(1):159–174. doi: 10.1113/jphysiol.1967.sp008294. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Garrahan P. J., Rega A. F. Cation loading of red blood cells. J Physiol. 1967 Nov;193(2):459–466. doi: 10.1113/jphysiol.1967.sp008371. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Glynn I. M., Lew V. L., Lüthi U. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J Physiol. 1970 Apr;207(2):371–391. doi: 10.1113/jphysiol.1970.sp009067. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Haas M., Schooler J., Tosteson D. C. Coupling of lithium to sodium transport in human red cells. Nature. 1975 Dec 4;258(5534):425–427. doi: 10.1038/258425a0. [DOI] [PubMed] [Google Scholar]
 - Hokin-Neaverson M., Spiegel D. A., Lewis W. C. Deficiency of erythrocyte sodium pump activity in bipolar manic-depressive psychosis. Life Sci. 1974 Nov 15;15(10):1739–1748. doi: 10.1016/0024-3205(74)90175-1. [DOI] [PubMed] [Google Scholar]
 - KEYNES R. D., SWAN R. C. The permeability of frog muscle fibres to lithium ions. J Physiol. 1959 Oct;147:626–638. doi: 10.1113/jphysiol.1959.sp006265. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - LOVE W. D., BURCH G. E. A comparison of potassium 42, rubidium 86, and cesium 134 as tracers of potassium in the study of cation metabolism of human erythrocytes in vitro. J Lab Clin Med. 1953 Mar;41(3):351–362. [PubMed] [Google Scholar]
 - Maizels M. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium or lithium chloride. J Physiol. 1968 Apr;195(3):657–679. doi: 10.1113/jphysiol.1968.sp008481. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - McConaghey P. D., Maizels M. Cation exchanges of lactose-treated human red cells. J Physiol. 1962 Aug;162(3):485–509. doi: 10.1113/jphysiol.1962.sp006946. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Mendels J., Frazer A. Intracellular lithium concentration and clinical response: towards a membrane theory of depression. J Psychiatr Res. 1973 Jun;10(1):9–18. doi: 10.1016/0022-3956(73)90005-8. [DOI] [PubMed] [Google Scholar]
 - Mullins L. J. Ion selectivity of carriers and channels. Biophys J. 1975 Sep;15(9):921–931. doi: 10.1016/S0006-3495(75)85867-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
 - Post R. L., Albright C. D., Dayani K. Resolution of pump and leak components of sodium and potassium ion transport in human erythrocytes. J Gen Physiol. 1967 May;50(5):1201–1220. doi: 10.1085/jgp.50.5.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Rybakowski J., Strzyzewski W. Letter: Red-blood-cell lithium index and long-term maintenance treatment. Lancet. 1976 Jun 26;1(7974):1408–1409. doi: 10.1016/s0140-6736(76)93056-7. [DOI] [PubMed] [Google Scholar]
 - Sachs J. R., Ellory J. C., Kropp D. L., Dunham P. B., Hoffman J. F. Antibody-induced alterations in the kinetic characteristics of the Na:K pump in goat red blood cells. J Gen Physiol. 1974 Apr;63(4):389–414. doi: 10.1085/jgp.63.4.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Sachs J. R. Interaction of external K, Na, and cardioactive steroids with the Na-K pump of the human red blood cell. J Gen Physiol. 1974 Feb;63(2):123–143. doi: 10.1085/jgp.63.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Sachs J. R., Welt L. G. The concentration dependence of active potassium transport in the human red blood cell. J Clin Invest. 1967 Jan;46(1):65–76. doi: 10.1172/JCI105512. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Thomas R. C., Simon W., Oehme M. Lithium accumulation by snail neurones measured by a new Li+-sensitive microelectrode. Nature. 1975 Dec 25;258(5537):754–756. doi: 10.1038/258754a0. [DOI] [PubMed] [Google Scholar]
 - Whittam R., Ager M. E. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes. Biochem J. 1964 Nov;93(2):337–348. doi: 10.1042/bj0930337. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - ZERAHN K. Studies on the active transport of lithium in the isolated frog skin. Acta Physiol Scand. 1955 Aug 19;33(4):347–358. doi: 10.1111/j.1748-1716.1955.tb01214.x. [DOI] [PubMed] [Google Scholar]
 
