Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Dec;73(12):4359–4363. doi: 10.1073/pnas.73.12.4359

Effect of 3':5'-cyclic AMP on glucose transport in rat adipocytes.

W M Taylor, M L Mak, M L Halperin
PMCID: PMC431454  PMID: 188036

Abstract

An indirect method for obtaining a reliable measure of the rate of glucose transport into adipocytes is described. Evidence is presented that altered levels of 3':5'-cyclic AMP can influence the transport of glucose into adipocytes. When cyclic AMP levels were lowered with antilipolytic agents (insulin, nicotinic acid, or clofibrate), rates of glucose transport were increased. In contrast, when adipose tissue levels of cyclic AMP were elevated by lipolytic hormones or theophylline, glucose transport when cyclic AMP levels were elevated by lipolytic agents. Agents that can raise cyclic AMP but inhibit lipolytic (procaine, amitryptyline, and phenylethylbiguanide) reduced the rate of glucose transport. Other data are presented that are consistent with the conclusion that cyclic AMP inhibits glucose transport into adipocytes.

Full text

PDF
4359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avruch J., Leone G. R., Martin D. B. Effects of epinephrine and insulin on phosphopeptide metabolism in adipocytes. J Biol Chem. 1976 Mar 10;251(5):1511–1515. [PubMed] [Google Scholar]
  2. BALL E. G., JUNGAS R. L. STUDIES ON THE METABOLISM OF ADIPOSE TISSUE. XIII. THE EFFECT OF ANAEROBIC CONDITIONS AND DIETARY REGIME ON THE RESPONSE TO INSULIN AND EPINEPHRINE. Biochemistry. 1963 May-Jun;2:586–592. doi: 10.1021/bi00903a035. [DOI] [PubMed] [Google Scholar]
  3. BUTCHER R. W., SUTHERLAND E. W. Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine. J Biol Chem. 1962 Apr;237:1244–1250. [PubMed] [Google Scholar]
  4. Blecher M. Evidence for the involvement of cyclic-3',5'-adenosine monophosphate in glucose utilization by isolated rat epididymal adipose cells. Biochem Biophys Res Commun. 1967 Jun 9;27(5):560–567. doi: 10.1016/s0006-291x(67)80024-x. [DOI] [PubMed] [Google Scholar]
  5. Blecher M., Merlino N. S., Ro'Ane J. T., Flynn P. D. Independence of the effects of epinephrine, glucagon, and adrenocorticotropin on glucose utilization from those on lipolysis in isolated rat adipose cells. J Biol Chem. 1969 Jul 10;244(13):3423–3429. [PubMed] [Google Scholar]
  6. Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown J. D., Beerends J. J., Bartels D. C. The effect of phenformin on lipolysis and the concentration of cyclic AMP and ATP in white fat cells. Endocrinology. 1973 Aug;93(2):445–449. doi: 10.1210/endo-93-2-445. [DOI] [PubMed] [Google Scholar]
  8. Brown J. D., Stone D. B., Steele A. A. Mechanism of action of antilipolytic agents: comparison of the effects of insulin, tolbutamide, and phenformin on lipolysis induced by dibutyryl cyclic AMP plus theophylline. Metabolism. 1969 Nov;18(11):926–929. doi: 10.1016/0026-0495(69)90033-x. [DOI] [PubMed] [Google Scholar]
  9. CROFFORD O. B., RENOLD A. E. GLUCOSE UPTAKE BY INCUBATED RAT EPIDIDYMAL ADIPOSE TISSUE. RATE-LIMITING STEPS AND SITE OF INSULIN ACTION. J Biol Chem. 1965 Jan;240:14–21. [PubMed] [Google Scholar]
  10. Chang K. J., Cuatrecasas P. Adenosine triphosphate-dependent inhibition of insulin-stimulated glucose transport in fat cells. Possible role of membrane phosphorylation. J Biol Chem. 1974 May 25;249(10):3170–3180. [PubMed] [Google Scholar]
  11. Czech M. P., Lynn D. G., Lynn W. S. Cytochalasin B-sensitive 2-deoxy-D-glucose transport in adipose cell ghosts. J Biol Chem. 1973 May 25;248(10):3636–3641. [PubMed] [Google Scholar]
  12. D'Costa M. A., Angel A. Inhibition of hormone-stimulated lipolysis by clofibrate. A possible mechanism for its hypolipidemic action. J Clin Invest. 1975 Jan;55(1):138–148. doi: 10.1172/JCI107904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Denton R. M., Halperin M. L. The control of fatty acid and triglyceride synthesis in rat epididymal adipose tissue. Roles of coenzyme A derivatives, citrate and L-glycerol 3-phosphate. Biochem J. 1968 Nov;110(1):27–38. doi: 10.1042/bj1100027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FRERICHS H., BALL E. G. Studies on the metabolism of adipose tissue. XI. Activation of phosphorylase by agents which stimulate lipolysis. Biochemistry. 1962 May 25;1:501–509. doi: 10.1021/bi00909a022. [DOI] [PubMed] [Google Scholar]
  15. Fain J. N., Reed N., Saperstein R. The isolation and metabolism of brown fat cells. J Biol Chem. 1967 Apr 25;242(8):1887–1894. [PubMed] [Google Scholar]
  16. Gliemann J., Gammeltoft S., Vinten J. Time course of insulin-receptor binding and insulin-induced lipogenesis in isolated rat fat cells. J Biol Chem. 1975 May 10;250(9):3368–3374. [PubMed] [Google Scholar]
  17. Gliemann J., Osterlind K., Vinten J., Gammeltoft S. A procedure for measurement of distribution spaces in isolated fat cells. Biochim Biophys Acta. 1972 Nov 24;286(1):1–9. doi: 10.1016/0304-4165(72)90082-7. [DOI] [PubMed] [Google Scholar]
  18. Goodman H. M. Effects of growth hormone on the penetration of L-arabinose into adipose tissue. Endocrinology. 1966 Apr;78(4):819–825. doi: 10.1210/endo-78-4-819. [DOI] [PubMed] [Google Scholar]
  19. Greenbaum A. L., Gumaa K. A., McLean P. The distribution of hepatic metabolites and the control of the pathways of carbohydrate metabolism in animals of different dietary and hormonal status. Arch Biochem Biophys. 1971 Apr;143(2):617–663. doi: 10.1016/0003-9861(71)90247-5. [DOI] [PubMed] [Google Scholar]
  20. Hernández A., Sols A. Transport and phosphorylation of sugars in adipose tissue. Biochem J. 1963 Jan;86(1):166–172. doi: 10.1042/bj0860166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hollenberg M. D., Cuatrecasas P. Insulin: interaction with membrane receprots and relationship to cyclic purine nucleotides and cell growth. Fed Proc. 1975 Jun;34(7):1556–1563. [PubMed] [Google Scholar]
  22. Holten D., Procsal D., Chang H. L. Regulation of pentose phosphate pathway dehydrogenases by NADP+/NADPH ratios. Biochem Biophys Res Commun. 1976 Jan 26;68(2):436–441. doi: 10.1016/0006-291x(76)91164-5. [DOI] [PubMed] [Google Scholar]
  23. Hope-Gill H., Vydelingum N., Kissebah A. H., Tulloch B. R., Fraser T. R. Simulation and enhancement of the adipose tissue insulin response by procaine hydrochloride: evidence for a role of calcium in insulin action. Horm Metab Res. 1974 Nov;6(6):457–463. doi: 10.1055/s-0028-1093803. [DOI] [PubMed] [Google Scholar]
  24. Illiano G., Cuatrecasas P. Glucose transport in fat cell membranes. J Biol Chem. 1971 Apr 25;246(8):2472–2479. [PubMed] [Google Scholar]
  25. Kather H., Rivera M., Brand K. Interrelationship and control of glucose metabolism and lipogenesis in isolated fat-cells. Control of pentose phosphate-cycle activity by cellular requirement for reduced nicotinamide adenine dinucleotide phosphate. Biochem J. 1972 Aug;128(5):1097–1102. doi: 10.1042/bj1281097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Katz J., Wals P. A. Effect of phenazine methosulfate on lipogenesis. J Biol Chem. 1970 May 25;245(10):2546–2548. [PubMed] [Google Scholar]
  27. Livingston J. N., Lockwood D. H. Effect of glucocorticoids on the glucose transport system of isolated fat cells. J Biol Chem. 1975 Nov 10;250(21):8353–8360. [PubMed] [Google Scholar]
  28. Lovrien F. C., Steele A. A., Brown J. D., Stone D. B. Effect of amitriptyline on lipolysis and cyclic AMP concentration in isolated fat cells. Metabolism. 1972 Mar;21(3):223–229. doi: 10.1016/0026-0495(72)90044-3. [DOI] [PubMed] [Google Scholar]
  29. Olefsky J. M. The effects of spontaneous obesity on insulin binding, glucose transport, and glucose oxidation of isolated rat adipocytes. J Clin Invest. 1976 Apr;57(4):842–851. doi: 10.1172/JCI108360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  31. Rodbell M. Metabolism of isolated fat cells. VI. The effects of insulin, lipolytic hormones, and theophylline on glucose transport and metabolism in "ghosts". J Biol Chem. 1967 Dec 25;242(24):5751–5756. [PubMed] [Google Scholar]
  32. Schimmel R. Deuterium oxide stimulates glucose metabolism and inhibits lipolysis in rat epididymal adipose tissue. Biochem Biophys Res Commun. 1975 May 5;64(1):347–354. doi: 10.1016/0006-291x(75)90260-0. [DOI] [PubMed] [Google Scholar]
  33. Siddle K., Hales C. N. The action of local anaesthetics on lipolysis and on adenosine 3':5'-cyclic monophosphate content in isolated rat fat-cells. Biochem J. 1974 Aug;142(2):345–351. doi: 10.1042/bj1420345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Trueheart P. A., Herrera M. G., Jungas R. L. Paradoxical effects of theophylline and its interaction with insulin on glucose metabolism in adipose tissue. Eur J Biochem. 1973 Sep 21;38(1):137–145. doi: 10.1111/j.1432-1033.1973.tb03043.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES