Abstract
The quantum efficiency of photosynthetic energy conversion was investigated in isolated spinach chloroplasts by measurements of the quantum requirements of ATP formation by cyclic and noncyclic photophosphorylation catalyzed by ferredoxin. ATP formation had a requirement of about 2 quanta per 1 ATP at 715 nm (corresponding to a requirement of 1 quantum per electron) and a requirement of 4 quanta per ATP (corresponding to a requirement of 2 quanta per electron) at 554 nm. When cyclic and noncyclic photophosphorylation were operating concurrently at 554 nm, a total of about 12 quanta was required to generate the two NADPH and three ATP needed for the assimilation of one CO2 to the level of glucose.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARNON D. I., ALLEN M. B., WHATLEY F. R. Photosynthesis by isolated chloroplasts. Nature. 1954 Aug 28;174(4426):394–396. doi: 10.1038/174394a0. [DOI] [PubMed] [Google Scholar]
- ARNON D. I., TSUJIMOTO H. Y., MCSWAIN B. D. ROLE OF FERREDOXIN IN PHOTOSYNTHETIC PRODUCTION OF OXYGEN AND PHOSPHORYLATION BY CHLOROPLASTS. Proc Natl Acad Sci U S A. 1964 Jun;51:1274–1282. doi: 10.1073/pnas.51.6.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnon D. I., Chain R. K. Regulation of ferredoxin-catalyzed photosynthetic phosphorylations. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4961–4965. doi: 10.1073/pnas.72.12.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnon D. I. The light reactions of photosynthesis. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2883–2892. doi: 10.1073/pnas.68.11.2883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnon D. I. The photosynthetic energy conversion process in isolated chloroplasts. Experientia. 1966 May 15;22(5):273–287. doi: 10.1007/BF01900449. [DOI] [PubMed] [Google Scholar]
- Arnon D. I., Tsujimoto H. Y., McSwain B. D. Ferredoxin and photosynthetic phosphorylation. Nature. 1967 May 6;214(5088):562–566. doi: 10.1038/214562a0. [DOI] [PubMed] [Google Scholar]
- Arnon D. I., Whatley F. R., Allen M. B. Assimilatory Power in Photosynthesis: Photosynthetic phosphorylation by isolated chloroplasts is coupled with TPN reduction. Science. 1958 May 2;127(3305):1026–1034. doi: 10.1126/science.127.3305.1026. [DOI] [PubMed] [Google Scholar]
- BASSHAM J. A., SHIBATA K., CALVIN M. Quantum requirement in photosynthesis related to respiration. Biochim Biophys Acta. 1955 Jul;17(3):332–340. doi: 10.1016/0006-3002(55)90380-2. [DOI] [PubMed] [Google Scholar]
- Del Campo F. F., Ramírez J. M., Arnon D. I. Stoichiometry of photosynthetic phosphorylation. J Biol Chem. 1968 May 25;243(10):2805–2809. [PubMed] [Google Scholar]
- Egneus H., Heber U., Matthiesen U., Kirk M. Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Biochim Biophys Acta. 1975 Dec 11;408(3):252–268. doi: 10.1016/0005-2728(75)90128-0. [DOI] [PubMed] [Google Scholar]
- Emerson R., Chalmers R. Transient Changes in Cellular Gas Exchange and the Problem of Maximum Efficiency of Photosynthesis. Plant Physiol. 1955 Nov;30(6):504–529. doi: 10.1104/pp.30.6.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Govindjee R., Rabinowitch E., Govindjee Maximum quantum yield and action spectrum of photosynthesis and fluorescence in Chlorella. Biochim Biophys Acta. 1968 Nov 26;162(4):539–544. doi: 10.1016/0005-2728(68)90061-3. [DOI] [PubMed] [Google Scholar]
- HAGIHARA B., LARDY H. A. A method for the separation of orthophosphate from other phosphate compounds. J Biol Chem. 1960 Mar;235:889–894. [PubMed] [Google Scholar]
- HOCH G., MARTIN I. TWO LIGHT REACTIONS IN TPN REDUCTION BY SPINACH CHLOROPLASTS. Arch Biochem Biophys. 1963 Sep;102:430–438. doi: 10.1016/0003-9861(63)90251-0. [DOI] [PubMed] [Google Scholar]
- Hall D. O., Rao K. K., Cammack R. A stable and easily extractable plant-type ferredoxin from the blue-green alga Spirulina maxima. Biochem Biophys Res Commun. 1972 May 26;47(4):798–802. doi: 10.1016/0006-291x(72)90562-1. [DOI] [PubMed] [Google Scholar]
- Joy K. W., Hageman R. H. The purification and properties of nitrite reductase from higher plants, and its dependence on ferredoxin. Biochem J. 1966 Jul;100(1):263–273. doi: 10.1042/bj1000263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knaff D. B., Arnon D. I. Spectral evidence for a new photoreactive component of the oxygen-evolving system in photosynthesis. Proc Natl Acad Sci U S A. 1969 Jul;63(3):963–969. doi: 10.1073/pnas.63.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McSwain B. D., Arnon D. I. Enhancement effects and the identity of the two photochemical reactions of photosynthesis. Proc Natl Acad Sci U S A. 1968 Nov;61(3):989–996. doi: 10.1073/pnas.61.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neyra C. A., Hageman R. H. Dependence of nitrite reduction on electron transport chloroplasts. Plant Physiol. 1974 Oct;54(4):480–483. doi: 10.1104/pp.54.4.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHIN M., ARNON D. I. ENZYMIC MECHANISMS OF PYRIDINE NUCLEOTIDE REDUCTION IN CHLOROPLASTS. J Biol Chem. 1965 Mar;240:1405–1411. [PubMed] [Google Scholar]
- SHIN M., TAGAWA K., ARNON D. I. CRYSTALLIZATION OF FERREDOXIN-TPN REDUCTASE AND ITS ROLE IN THE PHOTOSYNTHETIC APPARATUS OF CHLOROPLASTS. Biochem Z. 1963;338:84–96. [PubMed] [Google Scholar]
- Sauer K., Biggins J. Action spectra and quantum yields for nicotinamide--adenine dinucleotide phosphate reduction by chloroplasts. Biochim Biophys Acta. 1965 May 25;102(1):55–72. doi: 10.1016/0926-6585(65)90202-5. [DOI] [PubMed] [Google Scholar]
- Sauer K., Park R. B. The Hill reaction of chloroplasts. Action spectra and quantum requirements. Biochemistry. 1965 Dec;4(12):2791–2798. doi: 10.1021/bi00888a032. [DOI] [PubMed] [Google Scholar]
- Schmidt A., Trebst A. The mechanism of photosynthetic sulfate reduction by isolated chloroplasts. Biochim Biophys Acta. 1969 Aug 5;180(3):529–535. doi: 10.1016/0005-2728(69)90031-0. [DOI] [PubMed] [Google Scholar]
- Schwartz M. Light effects on oxygen evolution and phosphorylation in spinach chloroplasts. Biochim Biophys Acta. 1965 Jul 22;102(2):361–372. doi: 10.1016/0926-6585(65)90126-3. [DOI] [PubMed] [Google Scholar]
- Schwartz M. Wavelength-dependent quantum yield of ATP synthesis and NADP reduction in normal and dichlorodimethylphenylurea-poisoned chloroplast. Biochim Biophys Acta. 1967 May 9;131(3):559–570. doi: 10.1016/0005-2728(67)90015-1. [DOI] [PubMed] [Google Scholar]
- Spoehr H. A., Milner H. W. THE CHEMICAL COMPOSITION OF CHLORELLA; EFFECT OF ENVIRONMENTAL CONDITIONS. Plant Physiol. 1949 Jan;24(1):120–149. doi: 10.1104/pp.24.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun A. S., Sauer K. Pigment systems and electron transport in chloroplasts. I. Quantum requirements for the two light reactions in spinach chloroplasts. Biochim Biophys Acta. 1971 Jun 15;234(3):399–414. doi: 10.1016/0005-2728(71)90207-6. [DOI] [PubMed] [Google Scholar]
- TAGAWA K., ARNON D. I. Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature. 1962 Aug 11;195:537–543. doi: 10.1038/195537a0. [DOI] [PubMed] [Google Scholar]
- TAGAWA K., TSUJIMOTO H. Y., ARNON D. I. Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci U S A. 1963 Apr;49:567–572. doi: 10.1073/pnas.49.4.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAGAWA K., TSUJIMOTO H. Y., ARNON D. I. SEPARATION BY MONOCHROMATIC LIGHT OF PHOTOSYNTHETIC PHOSPHORYLATION FROM OXYGEN EVOLUTION. Proc Natl Acad Sci U S A. 1963 Sep;50:544–549. doi: 10.1073/pnas.50.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TREBST A. V., TSUJIMOTO H. Y., ARNON D. I. Separation of light and dark phases in the photosynthesis of isolated chloroplasts. Nature. 1958 Aug 9;182(4632):351–355. doi: 10.1038/182351a0. [DOI] [PubMed] [Google Scholar]
- WHATLEY F. R., ALLEN M. B., ROSENBERG L. L., CAPINDALE J. B., ARNON D. I. Photosynthesis by isolated chloroplasts. V. Phosphorylation and carbon dioxide fixation by broken chloroplasts. Biochim Biophys Acta. 1956 Jun;20(3):462–468. doi: 10.1016/0006-3002(56)90340-7. [DOI] [PubMed] [Google Scholar]
- YIN H. C., SHEN Y. K., SHEN G. M., YANG S. Y., CHIU K. S. Quantum requirement of photophosphorylation by isolated chloroplasts. Sci Sin. 1961 Dec;10:976–984. [PubMed] [Google Scholar]