Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Aug;74(8):3396–3398. doi: 10.1073/pnas.74.8.3396

On the translational error theory of aging

Patricia Edelmann 1,*, Jonathan Gallant 1
PMCID: PMC431577  PMID: 333438

Abstract

Theoretical treatments of error feedback in translation have revealed that two different modes of behavior are possible, depending on the values of certain parameters. In mode I, the error frequency will rise steadily toward randomness, inevitably reaching whatever value is catastrophic for cell survival; the “error catastrophe” theory of aging implicitly assumes this mode of behavior. In mode II, the error frequency will converge to a stable value, which may or may not have toxic consequences. We have performed an experimental test of the behavior of the translation system in Escherichia coli cells: we altered the system's intrinsic fidelity by means of the error-promoting drug streptomycin, and monitored the kinetics of change in error frequency by means of a specific assay of one kind of mistranslation (incorporation of cysteine into flagellin). We find that the system behaves according to mode II. Moreover, E. coli cells in which the error frequency has stabilized at a value as high as 50 times greater than normal continue to proliferate, albeit abnormally slowly, and their viability is not detectably reduced. Earlier results by Gorini and his associates point in the same direction. These observations diminish the plausibility of the error catastrophe theory of aging.

Keywords: error propagation, translational fidelity, clonal senescence

Full text

PDF
3396

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Branscomb E. W., Galas D. J. Progressive decrease in protein synthesis accuracy induced by streptomycin in Escherichia coli. Nature. 1975 Mar 13;254(5496):161–163. doi: 10.1038/254161a0. [DOI] [PubMed] [Google Scholar]
  2. DAVIES J., GILBERT W., GORINI L. STREPTOMYCIN, SUPPRESSION, AND THE CODE. Proc Natl Acad Sci U S A. 1964 May;51:883–890. doi: 10.1073/pnas.51.5.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davies J., Gorini L., Davis B. D. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol. 1965 Jul;1(1):93–106. [PubMed] [Google Scholar]
  4. Davies J., Jones D. S., Khorana H. G. A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol. 1966 Jun;18(1):48–57. doi: 10.1016/s0022-2836(66)80075-x. [DOI] [PubMed] [Google Scholar]
  5. Edelmann P., Gallant J. Mistranslation in E. coli. Cell. 1977 Jan;10(1):131–137. doi: 10.1016/0092-8674(77)90147-7. [DOI] [PubMed] [Google Scholar]
  6. Garvin R. T., Rosset R., Gorini L. Ribosomal assembly influenced by growth in the presence of streptomycin. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2762–2766. doi: 10.1073/pnas.70.10.2762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gershon H., Gershon D. Detection of inactive enzyme molecules in ageing organisms. Nature. 1970 Sep 19;227(5264):1214–1217. doi: 10.1038/2271214a0. [DOI] [PubMed] [Google Scholar]
  8. Gershon H., Gershon D. Inactive enzyme molecules in aging mice: liver aldolase. Proc Natl Acad Sci U S A. 1973 Mar;70(3):909–913. doi: 10.1073/pnas.70.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goel N. S., Ycas M. The error catastrophe hypothesis with reference to aging and the evolution of the protein synthesizing machinery. J Theor Biol. 1975 Nov;55(1):245–282. doi: 10.1016/s0022-5193(75)80118-4. [DOI] [PubMed] [Google Scholar]
  10. Hoffmann G. W. On the origin of the genetic code and the stability of the translation apparatus. J Mol Biol. 1974 Jun 25;86(2):349–362. doi: 10.1016/0022-2836(74)90024-2. [DOI] [PubMed] [Google Scholar]
  11. Holliday R. Errors in protein synthesis and clonal senescence in fungi. Nature. 1969 Mar 29;221(5187):1224–1228. doi: 10.1038/2211224a0. [DOI] [PubMed] [Google Scholar]
  12. Holliday R. Growth and death of diploid and transformed human fibroblasts. Fed Proc. 1975 Jan;34(1):51–55. [PubMed] [Google Scholar]
  13. Holliday R., Tarrant G. M. Altered enzymes in ageing human fibroblasts. Nature. 1972 Jul 7;238(5358):26–30. doi: 10.1038/238026a0. [DOI] [PubMed] [Google Scholar]
  14. Kirkwood T. B., Holliday R. The stability of the translation apparatus. J Mol Biol. 1975 Sep 15;97(2):257–265. doi: 10.1016/s0022-2836(75)80038-6. [DOI] [PubMed] [Google Scholar]
  15. Lewis C. M., Holliday R. Mistranslation and ageing in Neurospora. Nature. 1970 Nov 28;228(5274):877–880. doi: 10.1038/228877a0. [DOI] [PubMed] [Google Scholar]
  16. Lewis C. M., Tarrant G. M. Error theory and ageing in human diploid fibroblasts. Nature. 1972 Oct 6;239(5371):316–318. doi: 10.1038/239316a0. [DOI] [PubMed] [Google Scholar]
  17. ORGEL L. E. The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci U S A. 1963 Apr;49:517–521. doi: 10.1073/pnas.49.4.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orgel L. E. Ageing of clones of mammalian cells. Nature. 1973 Jun 22;243(5408):441–445. doi: 10.1038/243441a0. [DOI] [PubMed] [Google Scholar]
  19. Orgel L. E. The maintenance of the accuracy of protein synthesis and its relevance to ageing: a correction. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1476–1476. doi: 10.1073/pnas.67.3.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zeelon P., Gershon H., Gershon D. Inactive enzyme molecules in aging organisms. Nematode fructose-1,6-diphosphate aldolase. Biochemistry. 1973 Apr 24;12(9):1743–1750. doi: 10.1021/bi00733a013. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES