Abstract
The increase in human leukocyte adenosine 3′:5′-cyclic monophosphate (cyclic AMP) levels seen in response to various substances was markedly potentiated by colchicine and other agents that affect microtubule assembly. Addition of dl-isoproterenol (2 μM) or prostaglandin E1 (10 μM), together with the phosphodiesterase inhibitor isobutylmethylxanthine (1 mM), caused a much greater increase in cyclic AMP in colchicine-pretreated cells than in control cells. With isoproterenol (2 μM) plus isobutylmethylaxanthine (1 mM), cyclic AMP levels rose about 3-fold but, in combination with colchicine, these drugs caused a more than 15-fold increase in cyclic AMP. The effects of colchicine were both time- and dose-dependent; they could be seen within 1 min after addition of colchicine or at concentrations as low as 10 nM. In addition to its potentiation of hormonally induced increases in cyclic AMP levels, colchicine also potentiated the effect of isobutylmethylxanthine alone on leukocyte cyclic AMP levels. Vinblastine, vincristine, podophyllotoxin, and oncodazole all had effects similar to those of colchicine but lumicolchicine did not. The data suggest that cytoplasmic microtubules interact with the leukocyte plasma membrane to impose constraints on the expression of hormone-sensitive adenylate cyclase; the therapeutic effects of colchicine may depend in part upon the relaxation of such constraints. Moreover, the synergism described here between colchicine-like agents and hormones is of potential therapeutic importance in clinical conditions in which either alkaloid or hormone has been useful separately.
Keywords: microtubules, adenylate cyclase, catecholamines, prostaglandins
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berlin R. D., Ukena T. E. Effect of colchicine and vinblastine on the agglutination of polymorpho-nuclear leucocytes by concanavalin A. Nat New Biol. 1972 Jul 26;238(82):120–122. doi: 10.1038/newbio238120a0. [DOI] [PubMed] [Google Scholar]
- Borisy G. G., Taylor E. W. The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J Cell Biol. 1967 Aug;34(2):525–533. doi: 10.1083/jcb.34.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourne H. R., Lehrer R. I., Cline M. J., Melmon K. L. Cyclic 3',5'-adenosine monophosphate in the human lukocyte: synthesis, degradation, andeffects n neutrophil candidacidal activity. J Clin Invest. 1971 Apr;50(4):920–929. doi: 10.1172/JCI106564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourne H. R., Lichtenstein L. M., Melmon K. L., Henney C. S., Weinstein Y., Shearer G. M. Modulation of inflammation and immunity by cyclic AMP. Science. 1974 Apr 5;184(4132):19–28. doi: 10.1126/science.184.4132.19. [DOI] [PubMed] [Google Scholar]
- Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryan J. Definition of three classes of binding sites in isolated microtubule crystals. Biochemistry. 1972 Jul 4;11(14):2611–2616. doi: 10.1021/bi00764a010. [DOI] [PubMed] [Google Scholar]
- Busse W. W., Sosman J. Histamine inhibition of neutrophil lysosomal enzyme release: an H2 histamine receptor response. Science. 1976 Nov 12;194(4266):737–738. doi: 10.1126/science.185696. [DOI] [PubMed] [Google Scholar]
- Edelman G. M., Yahara I., Wang J. L. Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc Natl Acad Sci U S A. 1973 May;70(5):1442–1446. doi: 10.1073/pnas.70.5.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoebeke J., Van Nijen G., De Brabander M. Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin. Biochem Biophys Res Commun. 1976 Mar 22;69(2):319–324. doi: 10.1016/0006-291x(76)90524-6. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., George W. J. Hormonal control of lysosomal enzyme release from human neutrophils: elevation of cyclic nucleotide levels by autonomic neurohormones. Proc Natl Acad Sci U S A. 1974 May;71(5):2027–2031. doi: 10.1073/pnas.71.5.2027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Limbird L. E., Lefkowitz R. J. Resolution of beta-adrenergic receptor binding and adenylate cyclase activity by gel exclusion chromatography. J Biol Chem. 1977 Jan 25;252(2):799–802. [PubMed] [Google Scholar]
- MALAWISTA S. E. ON THE ACTION OF COLCHICINE, THE MELANOCYTE MODEL. J Exp Med. 1965 Aug 1;122:361–384. doi: 10.1084/jem.122.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malawista S. E., Bodel P. T. The dissociation by colchicine of phagocytosis from increased oxygen consumption in human leukocytes. J Clin Invest. 1967 May;46(5):786–796. doi: 10.1172/JCI105579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malawista S. E. Microtubules and the mobilization of lysosomes in phagocytizing human leukocytes. Ann N Y Acad Sci. 1975 Jun 30;253:738–749. doi: 10.1111/j.1749-6632.1975.tb19242.x. [DOI] [PubMed] [Google Scholar]
- Malawista S. E., Sato H., Bensch K. G. Vinblastine and griseofulvin reversibly disrupt the living mitotic spindle. Science. 1968 May 17;160(3829):770–772. doi: 10.1126/science.160.3829.770. [DOI] [PubMed] [Google Scholar]
- Malawista S. E. The action of colchicine in acute gouty arthritis. Arthritis Rheum. 1975 Nov-Dec;18(6 Suppl):835–846. doi: 10.1002/art.1780180729. [DOI] [PubMed] [Google Scholar]
- Malawista S. E. The melanocyte model. Colchicine-like effects of other antimitotic agents. J Cell Biol. 1971 Jun;49(3):848–855. doi: 10.1083/jcb.49.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malawista S. E. Vinblastine: colchicine-like effects on human blood leukocytes during phagocytosis. Blood. 1971 May;37(5):519–529. [PubMed] [Google Scholar]
- Orly J., Schramm M. Coupling of catecholamine receptor from one cell with adenylate cyclase from another cell by cell fusion. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4410–4414. doi: 10.1073/pnas.73.12.4410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson D. R., Tashjian A. H., Jr, Levine L. Prostaglandin-stimulated bone resorption by rheumatoid synovia. A possible mechanism for bone destruction in rheumatoid arthritis. J Clin Invest. 1975 Nov;56(5):1181–1188. doi: 10.1172/JCI108195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott R. E. Effects of prostaglandins, epinephrine and NaF on human leukocyte, platelet and liver adenyl cyclase. Blood. 1970 Apr;35(4):514–516. [PubMed] [Google Scholar]
- Wallace S. L., Omokoku B., Ertel N. H. Colchicine plasma levels. Implications as to pharmacology and mechanism of action. Am J Med. 1970 Apr;48(4):443–448. doi: 10.1016/0002-9343(70)90043-4. [DOI] [PubMed] [Google Scholar]
- Wilson L., Friedkin M. The biochemical events of mitosis. I. Synthesis and properties of colchicine labeled with tritium in its acetyl moiety. Biochemistry. 1966 Jul;5(7):2463–2468. doi: 10.1021/bi00871a042. [DOI] [PubMed] [Google Scholar]
- Wilson L. Microtubules as drug receptors: pharmacological properties of microtubule protein. Ann N Y Acad Sci. 1975 Jun 30;253:213–231. doi: 10.1111/j.1749-6632.1975.tb19201.x. [DOI] [PubMed] [Google Scholar]
- Yin H. H., Ukena T. E., Berlin R. D. Effect of colchicine, colcemid, and vinblastine on the agglutination, by concanavalin A, of transformed cells. Science. 1972 Nov 24;178(4063):867–868. doi: 10.1126/science.178.4063.867. [DOI] [PubMed] [Google Scholar]
- Zurier R. B., Weissmann G., Hoffstein S., Kammerman S., Tai H. H. Mechanisms of lysosomal enzyme release from human leukocytes. II. Effects of cAMP and cGMP, autonomic agonists, and agents which affect microtubule function. J Clin Invest. 1974 Jan;53(1):297–309. doi: 10.1172/JCI107550. [DOI] [PMC free article] [PubMed] [Google Scholar]