Abstract
We have used the spreading behavior of small drops of several fluorocarbon fluids and silicone oil on air-liquid interfaces to measure the surface tension of lungs in situ. The test fluids were calibrated in a surface balance at 37 degrees on monolayers of dipalmitoylphosphatidylcholine. At particular surface tensions characteristic of each fluid used, an increase in the tension of 1 mN/m or less caused the droplets to spread reversibly from a sphere to a lens shape. Using micropipettes we placed such droplets on the alveolar surfaces of excised rat lungs held at functional residual capacity and 37 degrees and found that the surface tension remained below 9 mN/m for at least 30 min. The surface tension-volume relationship was linear for tensions ranging from 9 to 20 mN/m.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachofen H., Hildebrandt J., Bachofen M. Pressure-volume curves of air- and liquid-filled excised lungs-surface tension in situ. J Appl Physiol. 1970 Oct;29(4):422–431. doi: 10.1152/jappl.1970.29.4.422. [DOI] [PubMed] [Google Scholar]
- CLEMENTS J. A., HUSTEAD R. F., JOHNSON R. P., GRIBETZ I. Pulmonary surface tension and alveolar stability. J Appl Physiol. 1961 May;16:444–450. doi: 10.1152/jappl.1961.16.3.444. [DOI] [PubMed] [Google Scholar]
- CLEMENTS J. A. Surface tension of lung extracts. Proc Soc Exp Biol Med. 1957 May;95(1):170–172. doi: 10.3181/00379727-95-23156. [DOI] [PubMed] [Google Scholar]
- Fung Y. C. Does the surface tension make the lung inherently unstable? Circ Res. 1975 Oct;37(4):497–502. doi: 10.1161/01.res.37.4.497. [DOI] [PubMed] [Google Scholar]
- Goerke J. Lung surfactant. Biochim Biophys Acta. 1974 Dec 16;344(3-4):241–261. doi: 10.1016/0304-4157(74)90009-4. [DOI] [PubMed] [Google Scholar]
- Horie T., Hildebrandt J. Dynamic compliance, limit cycles, and static equilibria of excised cat lung. J Appl Physiol. 1971 Sep;31(3):423–430. doi: 10.1152/jappl.1971.31.3.423. [DOI] [PubMed] [Google Scholar]
- PATTLE R. E. Properties, function and origin of the alveolar lining layer. Nature. 1955 Jun 25;175(4469):1125–1126. doi: 10.1038/1751125b0. [DOI] [PubMed] [Google Scholar]
- Reifenrath R. The significance of alveolar geometry and surface tension in the respiratory mechanics of the lung. Respir Physiol. 1975 Jul;24(2):115–137. doi: 10.1016/0034-5687(75)90107-3. [DOI] [PubMed] [Google Scholar]
- Reifenrath R., Zimmermann I. Blood plasma contamination of the lung alveolar surfactant obtained by various sampling techniques. Respir Physiol. 1973 Jul;18(2):238–248. doi: 10.1016/0034-5687(73)90053-4. [DOI] [PubMed] [Google Scholar]
- Reifenrath R., Zimmermann I. Surface tension properties of lung alveolar surfactant obtained by alveolar micropuncture. Respir Physiol. 1973 Dec;19(3):369–393. doi: 10.1016/0034-5687(73)90040-6. [DOI] [PubMed] [Google Scholar]
- Schoedel W., Slama H., Hansen E. Zeitabhängige Veränderungen des Filmdruckes alveolärer Oberflächenfilme im Langmuir-Trog. Pflugers Arch. 1969;306(1):20–32. doi: 10.1007/BF00586609. [DOI] [PubMed] [Google Scholar]
- Schoedel W., Slama H., Hansen E. Zeitabhängiges Verhalten von Filmen von oberflächenaktivem Material aus Lungenalveolen. Pflugers Arch. 1971;322(4):336–346. doi: 10.1007/BF00587751. [DOI] [PubMed] [Google Scholar]
- Slama H., Schoedel W., Hansen E. Bestimmung der Oberflächeneigenschaften von Stoffen aus den Lungenalveolen mit einer Blasenmethode. Pflugers Arch. 1971;322(4):355–363. doi: 10.1007/BF00587753. [DOI] [PubMed] [Google Scholar]
- TIERNEY D. F. PULMONARY SURFACTANT IN HEALTH AND DISEASE. Dis Chest. 1965 Mar;47:247–253. doi: 10.1378/chest.47.3.247. [DOI] [PubMed] [Google Scholar]