Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Sep;74(9):3657–3661. doi: 10.1073/pnas.74.9.3657

Stimulation of human platelet guanylate cyclase by unsaturated fatty acid peroxides.

H Hidaka, T Asano
PMCID: PMC431678  PMID: 20630

Abstract

Guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] activity of human platelet homogenates was stimulated by the addition of phospholipase A2 or unsaturated fatty acids such as oleic, vaccenic, linoleic, linolenic, eicosenoic, eicosadienoic, and arachidonic acids. The addition of lipoxidase potentiated the fatty acid-induced stimulation of guanylate cyclase purified by DEAE-cellulose column chromatography. The extent of the stimulation was dependent on the concentration of the oxidized form of these fatty acids (peroxides). Saturated fatty acids such as stearic and arachidic acids had no effect on the guanylate cyclase activity in the presence or absence of lipoxidase, indicating that human plateletguanylate cyclase is stimulated by unsaturated fatty acid peroxides rather than by fatty acids.Hemoglobin prevented the enzyme stimulation produced by low concentrations of fatty acid peroxides, but enhanced stimulation of the enzyme activity with high concentrations of fatty acid peroxides. 2-Mercaptoethanol, dithiothreitol, and N-ethylmaleimide inhibited the guanylate cyclase activities both in the presence and absence of unsaturated fatty acidperoxide. The stimulation of guanylate cyclase activity by unsaturated fatty acid peroxidesis attributed to oxidation of sulfhydryl residues of the enzyme protein.

Full text

PDF
3657

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber A. J. Cyclic nucleotides and platelet aggregation. Effect of aggregating agents on the activity of cyclic nucleotide-metabolizing enzymes. Biochim Biophys Acta. 1976 Sep 24;444(2):579–595. doi: 10.1016/0304-4165(76)90402-5. [DOI] [PubMed] [Google Scholar]
  2. Chiang T. M., Beachey E. H., Kang A. H. Interaction of a chick skin collagen fragment (alpha1-CB5) with human platelets. Biochemical studies during the aggregation and release reaction. J Biol Chem. 1975 Sep 10;250(17):6916–6922. [PubMed] [Google Scholar]
  3. Chrisman T. D., Garbers D. L., Parks M. A., Hardman J. G. Characterization of particulate and soluble guanylate cyclases from rat lung. J Biol Chem. 1975 Jan 25;250(2):374–381. [PubMed] [Google Scholar]
  4. Clyman R. I., Blacksin A. S., Manganiello V. C., Vaughan M. Oxygen and cyclic nucleotides in human umbilical artery. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3883–3887. doi: 10.1073/pnas.72.10.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fujimoto M., Okabayashi T. Proposed mechanisms of stimulation and inhibition of guanylate cyclase with reference to the actions of chlorpromazine, phosphoipases and Triton X-100. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1332–1336. doi: 10.1016/0006-291x(75)90173-4. [DOI] [PubMed] [Google Scholar]
  6. George W. J., Polson J. B., O'Toole A. G., Goldberg N. D. Elevation of guanosine 3',5'-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci U S A. 1970 Jun;66(2):398–403. doi: 10.1073/pnas.66.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glass D. B., Frey W., 2nd, Carr D. W., Goldberg N. D. Stimulation of human platelet guanylate cyclase by fatty acids. J Biol Chem. 1977 Feb 25;252(4):1279–1285. [PubMed] [Google Scholar]
  8. Glass D. B., Gerrard J. M., Townsend D., Carr D. W., White J. G., Goldberg N. D. The involvement of prostaglandin endoperoxide formation in the elevation of cyclic GMP levels during platelet aggregation. J Cyclic Nucleotide Res. 1977 Feb;3(1):37–44. [PubMed] [Google Scholar]
  9. Gullis R. J., Rowe C. E. The stimulation by transmitter substances and putative transmitter substances of the net activity of phospholipase A2 of synaptic membranes of cortex of guinea-pig brain. Biochem J. 1975 May;148(2):197–208. doi: 10.1042/bj1480197. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  10. Hamberg M., Svensson J., Wakabayashi T., Samuelsson B. Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proc Natl Acad Sci U S A. 1974 Feb;71(2):345–349. doi: 10.1073/pnas.71.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hardman J. G., Sutherland E. W. Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3',5'-monophosphate from guanosine trihosphate. J Biol Chem. 1969 Dec 10;244(23):6363–6370. [PubMed] [Google Scholar]
  12. Haslam R. J., McClenaghan M. D. Effects of collagen and of aspirin on the concentration of guanosine 3':5'-cyclic monophosphate in human blood platelets: measurement by a prelabelling technique. Biochem J. 1974 Feb;138(2):317–320. doi: 10.1042/bj1380317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Helwig J. J., Bollack C., Mandel P., Goridis C. Renal cortex guanylate cyclase. Preferential enrichment in glomerular membranes. Biochim Biophys Acta. 1975 Feb 19;377(2):463–472. doi: 10.1016/0005-2744(75)90326-5. [DOI] [PubMed] [Google Scholar]
  14. Hidaka H., Asano T. Human blood platelet 3': 5'-cyclic nucleotide phosphodiesterase. Isolation of low-Km and high-Km phosphodiesterase. Biochim Biophys Acta. 1976 Apr 8;429(2):485–497. doi: 10.1016/0005-2744(76)90296-5. [DOI] [PubMed] [Google Scholar]
  15. Hidaka H., Shibuya M. A new assay of cyclic nucleotide phosphodiesterase; its application to human serum. Biochem Med. 1974 Aug;10(4):301–311. doi: 10.1016/0006-2944(74)90033-7. [DOI] [PubMed] [Google Scholar]
  16. Illiano G., Tell G. P., Siegel M. E., Cuatrecasas P. Guanosine 3':5'-cyclic monophosphate and the action of insulin and acetylcholine. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2443–2447. doi: 10.1073/pnas.70.8.2443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ishikawa E., Ishikawa S., Davis J. W., Sutherland E. W. Determination of guanosine 3',5'-monophosphate in tissues and of guanyl cyclase in rat intestine. J Biol Chem. 1969 Dec 10;244(23):6371–6376. [PubMed] [Google Scholar]
  18. Katsuki S., Arnold W., Mittal C., Murad F. Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res. 1977 Feb;3(1):23–35. [PubMed] [Google Scholar]
  19. Kimura H., Mittal C. K., Murad F. Activation of guanylate cyclase from rat liver and other tissues by sodium azide. J Biol Chem. 1975 Oct 25;250(20):8016–8022. [PubMed] [Google Scholar]
  20. Kimura H., Murad F. Evidence for two different forms of guanylate cyclase in rat heart. J Biol Chem. 1974 Nov 10;249(21):6910–6916. [PubMed] [Google Scholar]
  21. LEWIS S. E., WILLS E. D. Inhibition of the autoxidation of unsaturated fatty acids by haematin proteins. Biochim Biophys Acta. 1963 Jun 18;70:336–338. doi: 10.1016/0006-3002(63)90757-1. [DOI] [PubMed] [Google Scholar]
  22. Lee T. P., Kuo J. F., Greengard P. Role of muscarinic cholinergic receptors in regulation of guanosine 3':5'-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3287–3291. doi: 10.1073/pnas.69.11.3287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Limbird L. E., Lefkowitz R. J. Myocardial guanylate cyclase: properties of the enzyme and effects of cholinergic agonists in vitro. Biochim Biophys Acta. 1975 Jan 23;377(1):186–196. doi: 10.1016/0005-2744(75)90299-5. [DOI] [PubMed] [Google Scholar]
  24. Little C., O'Brien P. J. The effectiveness of a lipid peroxide in oxidizing protein and non-protein thiols. Biochem J. 1968 Jan;106(2):419–423. doi: 10.1042/bj1060419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marquis N. R., Becker J. A., Vigdahl R. L. Platelet aggregation. 3. An epinephrine induced decrease in cyclic AMP synthesis. Biochem Biophys Res Commun. 1970 Jun 5;39(5):783–789. doi: 10.1016/0006-291x(70)90391-8. [DOI] [PubMed] [Google Scholar]
  26. Mickel H. S., Horbar J. The effect of peroxidized arachidonic acid upon human platelet aggregation. Lipids. 1974 Feb;9(2):68–71. doi: 10.1007/BF02532127. [DOI] [PubMed] [Google Scholar]
  27. Nakazawa K., Sano M., Saito T. Subcellular distribution and properties of guanylate cyclase in rat cerebellum. Biochim Biophys Acta. 1976 Sep 24;444(2):563–570. doi: 10.1016/0304-4165(76)90400-1. [DOI] [PubMed] [Google Scholar]
  28. Nugteren D. H. Arachidonate lipoxygenase in blood platelets. Biochim Biophys Acta. 1975 Feb 20;380(2):299–307. doi: 10.1016/0005-2760(75)90016-8. [DOI] [PubMed] [Google Scholar]
  29. Salzman E. W. Cyclic AMP and platelet function. N Engl J Med. 1972 Feb 17;286(7):358–363. doi: 10.1056/NEJM197202172860708. [DOI] [PubMed] [Google Scholar]
  30. Salzman E. W., Levine L. Cyclic 3',5'-adenosine monophosphate in human blood platelets. II. Effect of N6-2'-o-dibutyryl cyclic 3',5'-adenosine monophosphate on platelet function. J Clin Invest. 1971 Jan;50(1):131–141. doi: 10.1172/JCI106467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schultz G., Hardman J. G., Schultz K., Baird C. E., Sutherland E. W. The importance of calcium ions for the regulation of guanosine 3':5'-cyclic monophosphage levels. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3889–3893. doi: 10.1073/pnas.70.12.3889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shier W. T., Baldwin J. H., Nilsen-Hamilton M., Hamilton R. T., Thanassi N. M. Regulation of guanylate and adenylate cyclase activities by lysolecithin. Proc Natl Acad Sci U S A. 1976 May;73(5):1586–1590. doi: 10.1073/pnas.73.5.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stoner J. S., Manganiello V. C., Vaughan M. Guanosine cyclic 3',5'-monophosphate and guanylate cyclase activity in guinea pig lung: effects of acetylcholine and cholinesterase inhibitors. Mol Pharmacol. 1974 Jan;10(1):155–161. [PubMed] [Google Scholar]
  34. TAPPEL A. L. Unsaturated lipide oxidation catalyzed by hematin compounds. J Biol Chem. 1955 Dec;217(2):721–733. [PubMed] [Google Scholar]
  35. Van Sande J., Decoster C., Dumont J. E. Control and role of cyclic 3',5'-guanosine monophosphate. Biochem Biophys Res Commun. 1975 Jan 20;62(2):168–175. doi: 10.1016/s0006-291x(75)80119-7. [DOI] [PubMed] [Google Scholar]
  36. WILLS E. D. Effect of unsaturated fatty acids and their peroxides on enzymes. Biochem Pharmacol. 1961 Jul;7:7–16. doi: 10.1016/0006-2952(61)90119-8. [DOI] [PubMed] [Google Scholar]
  37. Wallach D., Pastan I. Stimulation of guanylate cyclase of fibroblasts by free fatty acids. J Biol Chem. 1976 Sep 25;251(18):5802–5809. [PubMed] [Google Scholar]
  38. White A. A., Crawford K. M., Patt C. S., Lad P. J. Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide. J Biol Chem. 1976 Dec 10;251(23):7304–7312. [PubMed] [Google Scholar]
  39. van den Bosch H. Phosphoglyceride metabolism. Annu Rev Biochem. 1974;43(0):243–277. doi: 10.1146/annurev.bi.43.070174.001331. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES