Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Sep;74(9):3662–3666. doi: 10.1073/pnas.74.9.3662

Coupling in cytochrome c oxidase

R J Kessler 1, G A Blondin 1, H Vande Zande 1, R A Haworth 1, D E Green 1
PMCID: PMC431680  PMID: 198794

Abstract

Cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase; EC 1.9.3.1) can be resolved into an electron transfer complex (ETC) and an ionophore transfer complex (ITC). Coupling requires an interaction between the moving electron in the ETC and a moving, positively charged ionophore-cation adduct in the ITC. The duplex character of cytochrome oxidase facilitates this interaction. The ITC mediates cyclical cation transport. It can be replaced as the coupling partner by the combination of valinomycin and nigericin in the presence of K+ when cytochrome oxidase is incorporated into liposomes containing acidic phospholipids or by the combination of lipid cytochrome c and bile acids in an ITC-resolved preparation of the ETC. Respiratory control can be induced by incorporating cytochrome oxidase into vesicles of unfractionated whole mitochondrial lipid. The activity of the ITC is suppressed by such incorporation and this suppression leads to the emergence of respiratory control. The ionophoroproteins of the ITC can be extracted into organic solvents; some 50% of the total protein of cytochrome oxidase is extractable. The release of free ionophore is achieved by tryptic digestion of the ionophoroprotein. Preliminary to this release the ionophoroprotein is degraded to an ionophoropeptide. Electrogenic ionophores, as well as uncoupler, are liberated by such proteolysis. The ITC contains a set of ionophoroproteins imbedded in a matrix of phospholipid.

Keywords: ionophore transfer complex, electrogenic intrinsic ionophores, uncoupling combinations, respiratory control, electron-positive charge coupling

Full text

PDF
3662

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blondin G. A., Kessler R. J., Green D. E. Isolation of an electrogenic K+/Ca2+ ionophore from an ionophoroprotein of beef heart mitochondria. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3667–3671. doi: 10.1073/pnas.74.9.3667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eytan G. D., Matheson M. J., Racker E. Incorporation of mitochondrial membrane proteins into liposomes containing acidic phospholipids. J Biol Chem. 1976 Nov 10;251(21):6831–6837. [PubMed] [Google Scholar]
  3. FOWLER L. R., RICHARDSON S. H., HATEFI Y. A rapid method for the preparation of highly purified cytochrome oxidase. Biochim Biophys Acta. 1962 Oct 8;64:170–173. doi: 10.1016/0006-3002(62)90770-9. [DOI] [PubMed] [Google Scholar]
  4. Feinstein M. B., Felsenfeld H. The detection of ionophorous antibiotic-cation complexes in water with fluorescent probes. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2037–2041. doi: 10.1073/pnas.68.9.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GREEN D. E., FLEISCHER S. THE ROLE OF LIPIDS IN MITOCHONDRIAL ELECTRON TRANSFER AND OXIDATIVE PHOSPHORYLATION. Biochim Biophys Acta. 1963 Oct 22;70:554–582. doi: 10.1016/0006-3002(63)90793-5. [DOI] [PubMed] [Google Scholar]
  6. Hinkle P. C., Kim J. J., Racker E. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem. 1972 Feb 25;247(4):1338–1339. [PubMed] [Google Scholar]
  7. Hunter D. R., Haworth R. A., Southard J. H. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem. 1976 Aug 25;251(16):5069–5077. [PubMed] [Google Scholar]
  8. Kagawa Y., Johnson L. W., Racker E. Activation of phosphorylating vesicles by net transfer of phosphatidyl choline by phospholipid transfer protein. Biochem Biophys Res Commun. 1973 Jan 23;50(2):245–251. doi: 10.1016/0006-291x(73)90832-2. [DOI] [PubMed] [Google Scholar]
  9. Kessler R. J., Vande Zande H., Tyson C. A., Blondin G. A., Fairfield J., Glasser P., Green D. E. Uncouplers and the molecular mechanism of uncoupling in mitochondria. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2241–2245. doi: 10.1073/pnas.74.6.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kopaczyk K., Perdue J., Green D. E. The relation of structural and catalytic protein in the mitochondrial electron transfer chain. Arch Biochem Biophys. 1966 Jul;115(1):215–225. doi: 10.1016/s0003-9861(66)81060-3. [DOI] [PubMed] [Google Scholar]
  11. Tyson C. A., Vande Zande H., Green D. E. Phospholipids as ionophores. J Biol Chem. 1976 Mar 10;251(5):1326–1332. [PubMed] [Google Scholar]
  12. WIDMER C., CRANE F. L. A lipid-soluble form of cytochrome c from the electron transport particle of beef-heart mitochondria. Biochim Biophys Acta. 1958 Jan;27(1):203–204. doi: 10.1016/0006-3002(58)90312-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES