Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Dec;74(12):5290–5294. doi: 10.1073/pnas.74.12.5290

Probing of β-adrenergic receptors by novel fluorescent β-adrenergic blockers

Daphne Atlas 1, Alexander Levitzki 1
PMCID: PMC431689  PMID: 23531

Abstract

The synthesis of two high-affinity fluorescent β-adrenergic blockers is described: dl-N1-[2-hydroxy-3-(1-naphthyloxy)propyl]-N2-(9-acridyl)-1,2-propanediamine (9-aminoacridylpropanolol, 9-AAP) and dl-N-[2-hydroxy-3-(1-naphthyloxy)propyl]-N′-dansylethylenediamine (dansyl analogue of propranolol, DAPN). Both 9-AAP and DAPN inhibit competitively the l-epinephrine-dependent adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] in turkey erythrocyte membranes without affecting the fluoride-stimulated adenylate cyclase activity. Similarly, 9-AAP and DAPN inhibit in a competitive manner the binding of [125I]-iodohydroxybenzylpindolol to these β-adrenergic receptors. The two fluorescent β-adrenergic blockers 9-AAP and DAPN probe specifically β-adrenergic receptors in the central nervous system as well as in other organs when injected into rats. The fluorescence pattern can be monitored by fluorescence microscopy performed on cryostat slices of these organs. The appearance of the characteristic fluorescence pattern can be blocked in a stereospecific fashion by a prior injection of l-propranolol and not by a prior injection of d-propranolol. These compounds therefore offer a powerful means to map β-adrenergic receptors in vivo. The stereospecific displacement of 9-AAP from the β-adrenergic receptors of turkey erythrocyte membranes by l-propranolol and by l-epinephrine can be detected in vitro using front-face fluorescence. The potential use of these compounds to probe β-receptors in vitro and in vivo is discussed.

Keywords: membrane adenylate cyclase, fluorescence microscopy, 9-aminoacridylpropranolol, dansyl analog of propranolol

Full text

PDF
5290

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atlas D., Levitzki A. An irreversible blocker for the beta-adrenergic receptor. Biochem Biophys Res Commun. 1976 Mar 22;69(2):397–403. doi: 10.1016/0006-291x(76)90535-0. [DOI] [PubMed] [Google Scholar]
  2. Atlas D., Melamed E., Lahav M. beta-Adrenergic receptors in rat kidney: direct localization by a fluorescent beta-blocker. Lab Invest. 1977 May;36(5):465–468. [PubMed] [Google Scholar]
  3. Atlas D., Steer M. L., Levitzki A. Affinity label for beta-adrenergic receptor in turkey erythrocytes. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1921–1925. doi: 10.1073/pnas.73.6.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Atlas D., Steer M. L., Levitzki A. Stereospecific binding of propranolol and catecholamines to the beta-adrenergic receptor. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4246–4248. doi: 10.1073/pnas.71.10.4246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Atlas D., Teichberg V. I., Changeux J. P. Direct evidence for beta-adrenoreceptors on the Purkinje cells of mouse cerebellum. Brain Res. 1977 Jun 17;128(3):532–536. doi: 10.1016/0006-8993(77)90178-0. [DOI] [PubMed] [Google Scholar]
  6. Aurbach G. D., Fedak S. A., Woodard C. J., Palmer J. S., Hauser D., Troxler F. Beta-adrenergic receptor: stereospecific interaction of iodinated beta-blocking agent with high affinity site. Science. 1974 Dec 27;186(4170):1223–1224. doi: 10.1126/science.186.4170.1223. [DOI] [PubMed] [Google Scholar]
  7. Brown E. M., Fedak S. A., Woodard C. J., Aurbach G. D. Beta-Adrenergic receptor interactions. Direct comparison of receptor interaction and biological activity. J Biol Chem. 1976 Mar 10;251(5):1239–1246. [PubMed] [Google Scholar]
  8. Gabel D., Steinberg I. Z., Katchalski E. Changes in conformation of insolubilized trypsin and chymotrypsin, followed by fluorescence. Biochemistry. 1971 Dec 7;10(25):4661–4669. doi: 10.1021/bi00801a011. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lefkowitz R. J., Mukherjee C., Coverstone M., Caron M. G. Stereospecific (3H)(minus)-alprenolol binding sites, beta-adrenergic receptors and adenylate cyclase. Biochem Biophys Res Commun. 1974 Sep 23;60(2):703–709. doi: 10.1016/0006-291x(74)90297-6. [DOI] [PubMed] [Google Scholar]
  11. Levitzki A., Atlas D., Steer M. L. The binding characteristics and number of beta-adrenergic receptors on the turkey erythrocyte. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2773–2776. doi: 10.1073/pnas.71.7.2773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levitzki A., Sevilia N., Atlas D., Steer M. L. Ligand specificity and characteristics of the beta-adrenergic receptor in turkey erythrocyte plasma membranes. J Mol Biol. 1975 Sep 5;97(1):35–46. [PubMed] [Google Scholar]
  13. Lindvall O., Björklund A. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl. 1974;412:1–48. [PubMed] [Google Scholar]
  14. Maguire M. E., Wiklund R. A., Anderson H. J., Gilman A. G. Binding of (125I)iodohydroxybenzylpindolol to putative beta-adrenergic receptors of rat glioma cells and other cell clones. J Biol Chem. 1976 Mar 10;251(5):1221–1231. [PubMed] [Google Scholar]
  15. Melamed E., Lahav M., Atlas D. Beta-adrenergic receptors in rat myocardium: direct detection by a new fluorescent beta-blocker. Experientia. 1976 Nov 15;32(11):1387–1389. doi: 10.1007/BF01937390. [DOI] [PubMed] [Google Scholar]
  16. Melamed E., Lahav M., Atlas D. Direct localisation of beta-adrenoceptor sites in rat cerebellum by a new fluorescent analogue of propranolol. Nature. 1976 Jun 3;261(5559):420–422. doi: 10.1038/261420a0. [DOI] [PubMed] [Google Scholar]
  17. Melamed E., Lahav M., Atlas D. Histochemical evidence for beta-adrenergic receptors in the rat spinal cord. Brain Res. 1976 Nov 12;116(3):511–515. doi: 10.1016/0006-8993(76)90499-6. [DOI] [PubMed] [Google Scholar]
  18. Romero J. A., Zatz M., Kebabian J. W., Axelrod J. Circadian cycles in binding of 3H-alprenolol to beta-adrenergic receptor sites in rat pineal. Nature. 1975 Dec 4;258(5534):435–436. doi: 10.1038/258435a0. [DOI] [PubMed] [Google Scholar]
  19. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  20. Steer M. L., Levitzki A. The control of adenylate cyclase by calcium in turkey erythrocyte ghosts. J Biol Chem. 1975 Mar 25;250(6):2080–2084. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES