Abstract
Studies were carried out to identify transmembrane bridging proteins in the plasma membrane of mouse L-929 cells. Cells grown in suspension culture were 125I-labeled by lactoperoxidase and allowed to ingest latex particles to produce inside-out membrane phagosome preparations. Phagosomes were isolated and the inner membrane surface was labeled with N-(5'-aminopentyl)-5-dimethylamino-1-naphthalenesulfonamide (dansylcadavarine) by a transglutaminase-catalyzed reaction. The phagosome membrane proteins were solubilized and dansylcadavarine-labeled proteins were isolated by anti-dansyl immunoadsorbent affinity chromatography. Dansylcadavarine-labeled proteins were analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and autoradiography for the presence of 125I-labeled material. By this technique, two iodinated proteins with molecular weights of approximately 50,000 and 80,000 appear to be selectively retained by the anti-dansyl immunoadsorbent, suggesting that these proteins span the plasma membrane.
Full text
PDF![5341](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f11/431711/8fa58c815812/pnas00043-0149.png)
![5342](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f11/431711/984cf456e2a9/pnas00043-0150.png)
![5343](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f11/431711/f58e1d1e1848/pnas00043-0151.png)
![5344](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f11/431711/210a3ac3ed85/pnas00043-0152.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birckbichler P. J., Dowben R. M., Matacic S., Loewy A. G. Isopeptide bonds in membrane proteins from eukaryotic cells. Biochim Biophys Acta. 1973 Jan 2;291(1):149–155. doi: 10.1016/0005-2736(73)90070-9. [DOI] [PubMed] [Google Scholar]
- Connellan J. M., Chung S. I., Whetzel N. K., Bradley L. M., Folk J. E. Structural properties of guinea pig liver transglutaminase. J Biol Chem. 1971 Feb 25;246(4):1093–1098. [PubMed] [Google Scholar]
- Dutton A., Rees E. D., Singer S. J. An experiment eliminating the rotating carrier mechanism for the active transport of Ca ion in sarcoplasmic reticulum membranes. Proc Natl Acad Sci U S A. 1976 May;73(5):1532–1536. doi: 10.1073/pnas.73.5.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutton A., Singer S. J. Crosslinking and labeling of membrane proteins by transglutaminase-catalyzed reactions. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2568–2571. doi: 10.1073/pnas.72.7.2568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guidotti G. Membrane proteins. Annu Rev Biochem. 1972;41:731–752. doi: 10.1146/annurev.bi.41.070172.003503. [DOI] [PubMed] [Google Scholar]
- Hubbard A. L., Cohn Z. A. Externally disposed plasma membrane proteins. II. Metabolic fate of iodinated polypeptides of mouse L cells. J Cell Biol. 1975 Feb;64(2):461–479. doi: 10.1083/jcb.64.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt R. C., Brown J. C. Identification of a high molecular weight trans-membrane protein in mouse L cells. J Mol Biol. 1975 Oct 5;97(4):413–422. doi: 10.1016/s0022-2836(75)80051-9. [DOI] [PubMed] [Google Scholar]
- Hynes R. O. Alteration of cell-surface proteins by viral transformation and by proteolysis. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3170–3174. doi: 10.1073/pnas.70.11.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J. Structural studies of sodium and potassium ion-activated adenosine triphosphatase. The relationship between molecular structure and the mechanism of active transport. J Biol Chem. 1975 Sep 25;250(18):7443–7449. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lorand L., Shishido R., Parameswaran K. N., Steck T. L. Modification of human erythrocyte ghosts with transglutaminase. Biochem Biophys Res Commun. 1975 Dec 1;67(3):1158–1166. doi: 10.1016/0006-291x(75)90795-0. [DOI] [PubMed] [Google Scholar]
- Marchesi V. T., Furthmayr H., Tomita M. The red cell membrane. Annu Rev Biochem. 1976;45:667–698. doi: 10.1146/annurev.bi.45.070176.003315. [DOI] [PubMed] [Google Scholar]
- Mosher D. F. Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor. J Biol Chem. 1975 Aug 25;250(16):6614–6621. [PubMed] [Google Scholar]
- Nicolson G. L. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta. 1976 Apr 13;457(1):57–108. doi: 10.1016/0304-4157(76)90014-9. [DOI] [PubMed] [Google Scholar]
- Studier F. W. Bacteriophage T7. Science. 1972 Apr 28;176(4033):367–376. doi: 10.1126/science.176.4033.367. [DOI] [PubMed] [Google Scholar]
- Tattersall P., Shatkin A. J., Ward D. C. Sequence homology between the structural polypeptides of minute virus of mice. J Mol Biol. 1977 Apr 25;111(4):375–394. doi: 10.1016/s0022-2836(77)80060-0. [DOI] [PubMed] [Google Scholar]
- Wetzel M. G., Korn E. D. Phagocytosis of latex beads by Acahamoeba castellanii (Neff). 3. Isolation of the phagocytic vesicles and their membranes. J Cell Biol. 1969 Oct;43(1):90–104. doi: 10.1083/jcb.43.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]