Abstract
We found that proline oxidase, the first enzyme of the proline degradative pathway, is inhibited by lactate. The Km of the enzyme for proline increases with increasing concentrations of lactate. Since proline can be a source for gluconeogenesis, regulation of proline degradation by lactate may serve as a mechanism for allocation of metabolic fuel sources. The marked inhibition of proline oxidase at levels of lactate that commonly occur in both genetic and acquired lactic acidosis may cause the previously unexplained hyperprolinemia seen in these metabolic disorders.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Exton J. H. Gluconeogenesis. Metabolism. 1972 Oct;21(10):945–990. doi: 10.1016/0026-0495(72)90028-5. [DOI] [PubMed] [Google Scholar]
- Felig P. The glucose-alanine cycle. Metabolism. 1973 Feb;22(2):179–207. doi: 10.1016/0026-0495(73)90269-2. [DOI] [PubMed] [Google Scholar]
- Garber A. J., Karl I. E., Kipnis D. M. Alanine and glutamine synthesis and release from skeletal muscle. IV. beta-Adrenergic inhibition of amino acid release. J Biol Chem. 1976 Feb 10;251(3):851–857. [PubMed] [Google Scholar]
- Haworth J. C., Perry T. L., Blass J. P., Hansen S., Urquhart N. Lactic acidosis in three sibs due to defects in both pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase complexes. Pediatrics. 1976 Oct;58(4):564–572. [PubMed] [Google Scholar]
- Holloway P. W. A simple procedure for removal of Triton X-100 from protein samples. Anal Biochem. 1973 May;53(1):304–308. doi: 10.1016/0003-2697(73)90436-3. [DOI] [PubMed] [Google Scholar]
- Johnson R. H., Walton J. L., Krebs H. A., Williamson D. H. Metabolic fuels during and after severe exercise in athletes and non-athletes. Lancet. 1969 Aug 30;2(7618):452–455. doi: 10.1016/s0140-6736(69)90164-0. [DOI] [PubMed] [Google Scholar]
- Katz J., Golden S., Wals P. A. Stimulation of hepatic glycogen synthesis by amino acids. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3433–3437. doi: 10.1073/pnas.73.10.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kowaloff E. M., Granger A. S., Phang J. M. Glucocorticoid control of hepatic proline oxidase. Metabolism. 1977 Aug;26(8):893–901. doi: 10.1016/0026-0495(77)90008-7. [DOI] [PubMed] [Google Scholar]
- Kramar R. Studies on the proline oxidase complex. Enzymologia. 1967 Jul 31;33(1):33–37. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Marliss E. B., Aoki T. T., Toews C. J., Felig P., Connon J. J., Kyner J., Huckabee W. E., Cahill G. F., Jr Amino acid metabolism in lactic acidosis. Am J Med. 1972 Apr;52(4):474–481. doi: 10.1016/0002-9343(72)90038-1. [DOI] [PubMed] [Google Scholar]
- Phang J. M., Downing S. J., Valle D. L., Kowaloff E. M. A radioisotopic assay for proline oxidase activity. J Lab Clin Med. 1975 Feb;85(2):312–317. [PubMed] [Google Scholar]
- Phang J. M., Downing S. J., Valle D. A radioisotopic assay for delta1-pyrroline-5-carboxylate reductase. Anal Biochem. 1973 Sep;55(1):266–271. doi: 10.1016/0003-2697(73)90312-6. [DOI] [PubMed] [Google Scholar]
- Phang J. M., Downing S. J., Valle D. A radioisotopic assay for ornithine-delta-transaminase. Anal Biochem. 1973 Sep;55(1):272–277. doi: 10.1016/0003-2697(73)90313-8. [DOI] [PubMed] [Google Scholar]
- Ross B. D., Hems R., Krebs H. A. The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J. 1967 Mar;102(3):942–951. doi: 10.1042/bj1020942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valle D. L., Phang J. M., Goodman S. I. Type 2 hyperprolinemia: absence of delta1-pyrroline-5-carboxylic acid dehydrogenase activity. Science. 1974 Sep 20;185(4156):1053–1054. doi: 10.1126/science.185.4156.1053. [DOI] [PubMed] [Google Scholar]