Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Sep;74(9):3810–3813. doi: 10.1073/pnas.74.9.3810

Molecular events and energy changes during the action potential.

D G Margineanu, E Schoffeniels
PMCID: PMC431740  PMID: 71734

Abstract

A novel interpretation of the existing data concerning the energy changes associated with nerve impulse propagation is proposed. The main conclusion is that the negative phrase ofthe initial heat of activity cannot be accounted for without recourse to conformational changes in membrane proteins. It stems from analyzing and computing the energy changes associated with ionic flows, capacitive currents, and structural changes in membrane gateways. A close quantitative agreement with microcalorimetric measurements was achieved.

Full text

PDF
3810

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott B. C., Howarth J. V. Heat studies in excitable tissues. Physiol Rev. 1973 Jan;53(1):120–158. doi: 10.1152/physrev.1973.53.1.120. [DOI] [PubMed] [Google Scholar]
  2. Chang H. W., Neumann E. Dynamic properties of isolated acetylcholine receptor proteins: release of calcium ions caused by acetylcholine binding. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3364–3368. doi: 10.1073/pnas.73.10.3364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen L. B. Changes in neuron structure during action potential propagation and synaptic transmission. Physiol Rev. 1973 Apr;53(2):373–418. doi: 10.1152/physrev.1973.53.2.373. [DOI] [PubMed] [Google Scholar]
  4. Coster H. G. Heat production and absorption during excitation in nerve. J Theor Biol. 1975 Oct;54(2):225–227. doi: 10.1016/s0022-5193(75)80127-5. [DOI] [PubMed] [Google Scholar]
  5. Dubois D. M., Schoffeniels E. A molecular model of action potentials. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2858–2862. doi: 10.1073/pnas.71.7.2858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HODGKIN A. L., KATZ B. The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol. 1949 Aug;109(1-2):240–249. doi: 10.1113/jphysiol.1949.sp004388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HODGKIN A. L., KEYNES R. D. Movements of labelled calcium in squid giant axons. J Physiol. 1957 Sep 30;138(2):253–281. doi: 10.1113/jphysiol.1957.sp005850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Howarth J. V. Heat production non-myelinated nerves. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):425–432. doi: 10.1098/rstb.1975.0020. [DOI] [PubMed] [Google Scholar]
  9. Howarth J. V., Keynes R. D., Ritchie J. M. The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres. J Physiol. 1968 Feb;194(3):745–793. doi: 10.1113/jphysiol.1968.sp008434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Keynes R. D., Ritchie J. M., Rojas E. The binding of tetrodotoxin to nerve membranes. J Physiol. 1971 Feb;213(1):235–254. doi: 10.1113/jphysiol.1971.sp009379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keynes R. D., Rojas E. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J Physiol. 1974 Jun;239(2):393–434. doi: 10.1113/jphysiol.1974.sp010575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levitan E., Palti Y. Dipole moment, enthalpy, and entropy changes of Hodgkin-Huxley type kinetic units. Biophys J. 1975 Mar;15(3):239–251. doi: 10.1016/S0006-3495(75)85815-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. NACHMANSOHN D. Metabolism and function of the nerve cell. Harvey Lect. 1953;49:57–99. [PubMed] [Google Scholar]
  14. Neumann E., Chang H. W. Dynamic properties of isolated acetylcholine receptor protein: kinetics of the binding of acetylcholine and Ca ions. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3994–3998. doi: 10.1073/pnas.73.11.3994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ritchie J. M. Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism. Prog Biophys Mol Biol. 1973;26:147–187. doi: 10.1016/0079-6107(73)90019-9. [DOI] [PubMed] [Google Scholar]
  16. Singer S. J. The molecular organization of membranes. Annu Rev Biochem. 1974;43(0):805–833. doi: 10.1146/annurev.bi.43.070174.004105. [DOI] [PubMed] [Google Scholar]
  17. Sturtevant J. M. The enthalpy of hydrolysis of acetylcholine. J Biol Chem. 1972 Feb 10;247(3):968–969. [PubMed] [Google Scholar]
  18. Wei L. Y. Dipole theory of heat production and absorption in nerve axon. Biophys J. 1972 Sep;12(9):1159–1170. doi: 10.1016/S0006-3495(72)86152-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES