Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Sep;74(9):3826–3830. doi: 10.1073/pnas.74.9.3826

Electron paramagnetic resonance studies of photosynthetic electron transport: Photoreduction of ferredoxin and membrane-bound iron-sulfur centers*

Daniel I Arnon 1, Harry Y Tsujimoto 1, Tetsuo Hiyama 1
PMCID: PMC431747  PMID: 198808

Abstract

Electron paramagnetic resonance spectrometry was used to investigate, at physiological temperatures, light-induced electron transport from membrane-bound iron-sulfur components (bound ferredoxin) to soluble ferredoxin and NADP+ in membrane fragments (from the blue-green alga, Nostoc muscorum) that had high rates of electron transport from water to NADP+ and from an artificial electron donor, reduced dichlorophenolindophenol (DCIPH2) to NADP+. Illumination at 20° resulted in the photoreduction of membrane-bound iron-sulfur centers A and B. Photoreduction by water gave electron paramagnetic resonance signals of both centers A and B; photoreduction by DCIPH2 was found to generate a strong electron paramagnetic signal of only center B.

When water was the reductant, the addition and photoreduction of soluble ferredoxin generated additional signals characteristics of soluble ferredoxin without causing a decrease in the amplitude of the signals due to centers A and B. The further addition of NADP+ (and its photoreduction) greatly diminished signals due to the bound iron-sulfur centers and to soluble ferredoxin. An outflow of electrons from center B to soluble ferredoxin and NADP+ was particularly pronounced when DCIPH2 was the reductant. These observations provide the first evidence for a light-induced electron transport between membrane-bound iron-sulfur centers and ferredoxin-NADP+. The relationship of these observations to current concepts of photosynthetic electron transport is discussed.

Keywords: photosynthesis, reducing power, electron carriers

Full text

PDF
3826

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNON D. I., TSUJIMOTO H. Y., MCSWAIN B. D. ROLE OF FERREDOXIN IN PHOTOSYNTHETIC PRODUCTION OF OXYGEN AND PHOSPHORYLATION BY CHLOROPLASTS. Proc Natl Acad Sci U S A. 1964 Jun;51:1274–1282. doi: 10.1073/pnas.51.6.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnon D. I., Chain R. K. Regulation of ferredoxin-catalyzed photosynthetic phosphorylations. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4961–4965. doi: 10.1073/pnas.72.12.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arnon D. I., McSwain B. D., Tsujimoto H. Y., Wada K. Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. Biochim Biophys Acta. 1974 Aug 23;357(2):231–245. doi: 10.1016/0005-2728(74)90063-2. [DOI] [PubMed] [Google Scholar]
  5. Arnon D. I. The light reactions of photosynthesis. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2883–2892. doi: 10.1073/pnas.68.11.2883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bearden A. J., Malkin R. Chloroplast photosynthesis: the reaction center of photosystem I. Brookhaven Symp Biol. 1976 Jun 7;(28):247–266. [PubMed] [Google Scholar]
  7. Bearden A. J., Malkin R. Correlation of reaction-center chlorophyll (P-700) oxidation and bound iron-sulfur protein photoreduction in chloroplast photosystem I at low temperatures. Biochim Biophys Acta. 1976 Jun 8;430(3):538–547. doi: 10.1016/0005-2728(76)90029-3. [DOI] [PubMed] [Google Scholar]
  8. Bearden A. J., Malkin R. Primary photochemical reactions in chloroplast photosynthesis. Q Rev Biophys. 1974 May;7(2):131–177. doi: 10.1017/s0033583500001396. [DOI] [PubMed] [Google Scholar]
  9. Bearden A. J., Malkin R. Quantitative EPR studies of the primary reaction of photosystem I in chloroplasts. Biochim Biophys Acta. 1972 Dec 14;283(3):456–468. doi: 10.1016/0005-2728(72)90262-9. [DOI] [PubMed] [Google Scholar]
  10. Bearden A. J., Malkin R. The bound ferredoxin of chloroplasts: a role as the primary electron acceptor of photosystem I. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1299–1305. doi: 10.1016/s0006-291x(72)80116-5. [DOI] [PubMed] [Google Scholar]
  11. Chain R. K., Arnon D. I. Quantum efficiency of photosynthetic energy conversion. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3377–3381. doi: 10.1073/pnas.74.8.3377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans E. H., Cammack R. Properties of the primary electron acceptor complex of photosystem I in the blue green alga Chlorogloea fritschii. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1212–1218. doi: 10.1016/0006-291x(76)90326-0. [DOI] [PubMed] [Google Scholar]
  13. Evans M. C., Reeves S. G., Cammack R. Determination of the oxidation-reduction potential of the bound iron-sulphur proteins of the primary electron acceptor complex of photosystem I in spinach chloroplasts. FEBS Lett. 1974 Dec 1;49(1):111–114. doi: 10.1016/0014-5793(74)80644-7. [DOI] [PubMed] [Google Scholar]
  14. Evans M. C., Reeves S. G., Telfer A. The detection of a bound ferredoxin in the photosynthetic lamellae of blue-green algae and other oxygen evolving photosynthetic organisms. Biochem Biophys Res Commun. 1973 Apr 2;51(3):593–596. doi: 10.1016/0006-291x(73)91355-7. [DOI] [PubMed] [Google Scholar]
  15. Evans M. C., Reeves S. G., Telfer A. The detection of a bound ferredoxin in the photosynthetic lamellae of blue-green algae and other oxygen evolving photosynthetic organisms. Biochem Biophys Res Commun. 1973 Apr 2;51(3):593–596. doi: 10.1016/0006-291x(73)91355-7. [DOI] [PubMed] [Google Scholar]
  16. Evans M. C., Sihra C. K., Cammack R. The properties of the primary electron acceptor in the Photosystem I reaction centre of spinach chloroplasts and its interaction with P700 and the bound ferredoxin in various oxidation-reduction states. Biochem J. 1976 Jul 15;158(1):71–77. doi: 10.1042/bj1580071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Evans M. C., Telfer A., Lord A. V. Evidence for the role of a bound ferredoxin as the primary electron acceptor of photosystem I in spinach chloroplasts. Biochim Biophys Acta. 1972 Jun 23;267(3):530–537. doi: 10.1016/0005-2728(72)90181-8. [DOI] [PubMed] [Google Scholar]
  18. Hall D. O., Gibson J. F., Whatley F. R. Electron spin resonance spectra of spinach ferredoxin. Biochem Biophys Res Commun. 1966 Apr 6;23(1):81–84. doi: 10.1016/0006-291x(66)90272-5. [DOI] [PubMed] [Google Scholar]
  19. Ke B., Hansen R. E., Beinert H. Oxidation-reduction potentials of bound iron-sulfur proteins of photosystem I. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2941–2945. doi: 10.1073/pnas.70.10.2941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Malkin R., Bearden A. J. Laser-flash-activated electron paramagnetic resonance studies of primary photochemical reactions in chloroplasts. Biochim Biophys Acta. 1975 Aug 11;396(2):250–259. doi: 10.1016/0005-2728(75)90039-0. [DOI] [PubMed] [Google Scholar]
  21. Malkin R., Bearden A. J. Primary reactions of photosynthesis: photoreduction of a bound chloroplast ferredoxin at low temperature as detected by EPR spectroscopy. Proc Natl Acad Sci U S A. 1971 Jan;68(1):16–19. doi: 10.1073/pnas.68.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McIntosh A. R., Chu M., Bolton J. R. Flash photolysis electron spin resonance studies of the electron acceptor species at low temperatures in photosystem I of spinach subchloroplast particles. Biochim Biophys Acta. 1975 Feb 17;376(2):308–314. doi: 10.1016/0005-2728(75)90023-7. [DOI] [PubMed] [Google Scholar]
  23. Mcintosh A. R., Bolton J. R. Electron spin resonance spectrum of species "X" which may function as the primary electron acceptor in photosystem I of green plant photosynthesis. Biochim Biophys Acta. 1976 Jun 8;430(3):555–559. [PubMed] [Google Scholar]
  24. Palmer G., Sands R. H. On the magnetic resonance of spinach ferredoxin. J Biol Chem. 1966 Jan 10;241(1):253–253. [PubMed] [Google Scholar]
  25. SHIN M., ARNON D. I. ENZYMIC MECHANISMS OF PYRIDINE NUCLEOTIDE REDUCTION IN CHLOROPLASTS. J Biol Chem. 1965 Mar;240:1405–1411. [PubMed] [Google Scholar]
  26. SHIN M., TAGAWA K., ARNON D. I. CRYSTALLIZATION OF FERREDOXIN-TPN REDUCTASE AND ITS ROLE IN THE PHOTOSYNTHETIC APPARATUS OF CHLOROPLASTS. Biochem Z. 1963;338:84–96. [PubMed] [Google Scholar]
  27. SHIN M., TAGAWA K., ARNON D. I. CRYSTALLIZATION OF FERREDOXIN-TPN REDUCTASE AND ITS ROLE IN THE PHOTOSYNTHETIC APPARATUS OF CHLOROPLASTS. Biochem Z. 1963;338:84–96. [PubMed] [Google Scholar]
  28. TAGAWA K., ARNON D. I. Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature. 1962 Aug 11;195:537–543. doi: 10.1038/195537a0. [DOI] [PubMed] [Google Scholar]
  29. TAGAWA K., TSUJIMOTO H. Y., ARNON D. I. Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci U S A. 1963 Apr;49:567–572. doi: 10.1073/pnas.49.4.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. TAGAWA K., TSUJIMOTO H. Y., ARNON D. I. SEPARATION BY MONOCHROMATIC LIGHT OF PHOTOSYNTHETIC PHOSPHORYLATION FROM OXYGEN EVOLUTION. Proc Natl Acad Sci U S A. 1963 Sep;50:544–549. doi: 10.1073/pnas.50.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tsujimoto H. Y., McSwain B. D., Hiyama T., Arnon D. I. Effect of NADP on light-induced cytochrome changes in membrane fragments from a blue-green alga. Biochim Biophys Acta. 1976 Feb 16;423(2):303–312. doi: 10.1016/0005-2728(76)90187-0. [DOI] [PubMed] [Google Scholar]
  32. WHATLEY F. R., TAGAWA K., ARNON D. I. Separation of the light and dark reactions in electron transfer during photosynthesis. Proc Natl Acad Sci U S A. 1963 Feb 15;49:266–270. doi: 10.1073/pnas.49.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES