Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Feb 15;91(4):1465–1469. doi: 10.1073/pnas.91.4.1465

Regulation of human insulin receptor RNA splicing in vivo.

S Norgren 1, J Zierath 1, A Wedell 1, H Wallberg-Henriksson 1, H Luthman 1
PMCID: PMC43180  PMID: 8108432

Abstract

Alternative splicing involving the inclusion or exclusion of exon 11 in insulin receptor mRNA results in two isoforms of the alpha subunit. The two subunits display tissue-specific variation in relative abundance at both RNA and protein levels and discrete differences in biological properties. We have previously reported a small decrease in the relative level of RNA molecules lacking exon 11 (Ex 11-) in skeletal muscle of non-insulin-dependent diabetes mellitus (NIDDM) patients. In the present study, we describe a drastically altered ratio in favor of Ex 11- RNA in a NIDDM patient with markedly impaired insulin-mediated glucose utilization. The ratio between the splice variants changed from 74% to 48% Ex 11- RNA after initiation of insulin treatment, which considerably improved his blood glucose concentrations and insulin-stimulated glucose utilization rate. This shows that splicing can be regulated by metabolic and/or hormonal factors in response to changes in the in vivo milieu. No genomic deletion or base substitution in either the coding regions or exon-intron borders was found that explains the altered splicing. Heterozygous mutations were excluded in sequences of putative importance for splicing outside the analyzed regions as both alleles were expressed and spliced in an identical fashion. Furthermore, these results suggest that this patient fails to regulate alternative splicing of exon 11 in the manner observed in most NIDDM patients and that this defect is associated with the extreme impairment in insulin action.

Full text

PDF
1465

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson B., Hou S. M., Lambert B. Mutations causing defective splicing in the human hprt gene. Environ Mol Mutagen. 1992;20(2):89–95. doi: 10.1002/em.2850200204. [DOI] [PubMed] [Google Scholar]
  2. Andréasson K., Galuska D., Thörne A., Sonnenfeld T., Wallberg-Henriksson H. Decreased insulin-stimulated 3-0-methylglucose transport in in vitro incubated muscle strips from type II diabetic subjects. Acta Physiol Scand. 1991 Jun;142(2):255–260. doi: 10.1111/j.1748-1716.1991.tb09154.x. [DOI] [PubMed] [Google Scholar]
  3. Arner P., Pollare T., Lithell H., Livingston J. N. Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1987 Jun;30(6):437–440. doi: 10.1007/BF00292549. [DOI] [PubMed] [Google Scholar]
  4. Benecke H., Flier J. S., Moller D. E. Alternatively spliced variants of the insulin receptor protein. Expression in normal and diabetic human tissues. J Clin Invest. 1992 Jun;89(6):2066–2070. doi: 10.1172/JCI115819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caro J. F., Sinha M. K., Raju S. M., Ittoop O., Pories W. J., Flickinger E. G., Meelheim D., Dohm G. L. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest. 1987 May;79(5):1330–1337. doi: 10.1172/JCI112958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeFronzo R. A., Bonadonna R. C., Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 1992 Mar;15(3):318–368. doi: 10.2337/diacare.15.3.318. [DOI] [PubMed] [Google Scholar]
  7. DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
  8. Dietz H. C., Valle D., Francomano C. A., Kendzior R. J., Jr, Pyeritz R. E., Cutting G. R. The skipping of constitutive exons in vivo induced by nonsense mutations. Science. 1993 Jan 29;259(5095):680–683. doi: 10.1126/science.8430317. [DOI] [PubMed] [Google Scholar]
  9. Dohm G. L., Tapscott E. B., Pories W. J., Dabbs D. J., Flickinger E. G., Meelheim D., Fushiki T., Atkinson S. M., Elton C. W., Caro J. F. An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. J Clin Invest. 1988 Aug;82(2):486–494. doi: 10.1172/JCI113622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garvey W. T. Glucose transport and NIDDM. Diabetes Care. 1992 Mar;15(3):396–417. doi: 10.2337/diacare.15.3.396. [DOI] [PubMed] [Google Scholar]
  11. Goldstein B. J., Dudley A. L. Heterogeneity of messenger RNA that encodes the rat insulin receptor is limited to the domain of exon 11. Analysis by RNA heteroduplex mapping, amplification of cDNA, and in vitro translation. Diabetes. 1992 Oct;41(10):1293–1300. doi: 10.2337/diab.41.10.1293. [DOI] [PubMed] [Google Scholar]
  12. Goldstein B. J., Dudley A. L. The rat insulin receptor: primary structure and conservation of tissue-specific alternative messenger RNA splicing. Mol Endocrinol. 1990 Feb;4(2):235–244. doi: 10.1210/mend-4-2-235. [DOI] [PubMed] [Google Scholar]
  13. Grabowski P. J., Nasim F. U., Kuo H. C., Burch R. Combinatorial splicing of exon pairs by two-site binding of U1 small nuclear ribonucleoprotein particle. Mol Cell Biol. 1991 Dec;11(12):5919–5928. doi: 10.1128/mcb.11.12.5919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Green M. R. Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annu Rev Cell Biol. 1991;7:559–599. doi: 10.1146/annurev.cb.07.110191.003015. [DOI] [PubMed] [Google Scholar]
  15. Hultman T., Ståhl S., Hornes E., Uhlén M. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res. 1989 Jul 11;17(13):4937–4946. doi: 10.1093/nar/17.13.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Häring H. U., Mehnert H. Pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: candidates for a signal transmitter defect causing insulin resistance of the skeletal muscle. Diabetologia. 1993 Mar;36(3):176–182. doi: 10.1007/BF00399946. [DOI] [PubMed] [Google Scholar]
  17. Häring H. U. The insulin receptor: signalling mechanism and contribution to the pathogenesis of insulin resistance. Diabetologia. 1991 Dec;34(12):848–861. doi: 10.1007/BF00400192. [DOI] [PubMed] [Google Scholar]
  18. Häring H., Obermaier B., Ermel B., Su Z., Mushack J., Rattenhuber E., Hölzl J., Kirsch D., Machicao F., Herberg L. Insulin receptor kinase defects as a possible cause of cellular insulin resistance. Diabete Metab. 1987 Jul;13(3 Pt 2):284–293. [PubMed] [Google Scholar]
  19. Kahn C. R. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism. 1978 Dec;27(12 Suppl 2):1893–1902. doi: 10.1016/s0026-0495(78)80007-9. [DOI] [PubMed] [Google Scholar]
  20. Kellerer M., Lammers R., Ermel B., Tippmer S., Vogt B., Obermaier-Kusser B., Ullrich A., Häring H. U. Distinct alpha-subunit structures of human insulin receptor A and B variants determine differences in tyrosine kinase activities. Biochemistry. 1992 May 19;31(19):4588–4596. doi: 10.1021/bi00134a008. [DOI] [PubMed] [Google Scholar]
  21. Kolterman O. G., Gray R. S., Griffin J., Burstein P., Insel J., Scarlett J. A., Olefsky J. M. Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J Clin Invest. 1981 Oct;68(4):957–969. doi: 10.1172/JCI110350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McClain D. A. Different ligand affinities of the two human insulin receptor splice variants are reflected in parallel changes in sensitivity for insulin action. Mol Endocrinol. 1991 May;5(5):734–739. doi: 10.1210/mend-5-5-734. [DOI] [PubMed] [Google Scholar]
  23. Moller D. E., Yokota A., Caro J. F., Flier J. S. Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol Endocrinol. 1989 Aug;3(8):1263–1269. doi: 10.1210/mend-3-8-1263. [DOI] [PubMed] [Google Scholar]
  24. Mosthaf L., Grako K., Dull T. J., Coussens L., Ullrich A., McClain D. A. Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J. 1990 Aug;9(8):2409–2413. doi: 10.1002/j.1460-2075.1990.tb07416.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mosthaf L., Vogt B., Häring H. U., Ullrich A. Altered expression of insulin receptor types A and B in the skeletal muscle of non-insulin-dependent diabetes mellitus patients. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4728–4730. doi: 10.1073/pnas.88.11.4728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Norgren S., Zierath J., Galuska D., Wallberg-Henriksson H., Luthman H. Differences in the ratio of RNA encoding two isoforms of the insulin receptor between control and NIDDM patients. The RNA variant without Exon 11 predominates in both groups. Diabetes. 1993 May;42(5):675–681. doi: 10.2337/diab.42.5.675. [DOI] [PubMed] [Google Scholar]
  27. Robberson B. L., Cote G. J., Berget S. M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol. 1990 Jan;10(1):84–94. doi: 10.1128/mcb.10.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Seino S., Bell G. I. Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun. 1989 Feb 28;159(1):312–316. doi: 10.1016/0006-291x(89)92439-x. [DOI] [PubMed] [Google Scholar]
  29. Seino S., Seino M., Bell G. I. Human insulin-receptor gene. Partial sequence and amplification of exons by polymerase chain reaction. Diabetes. 1990 Jan;39(1):123–128. doi: 10.2337/diacare.39.1.123. [DOI] [PubMed] [Google Scholar]
  30. Sharp P. A. Splicing of messenger RNA precursors. Science. 1987 Feb 13;235(4790):766–771. doi: 10.1126/science.3544217. [DOI] [PubMed] [Google Scholar]
  31. Smith C. W., Patton J. G., Nadal-Ginard B. Alternative splicing in the control of gene expression. Annu Rev Genet. 1989;23:527–577. doi: 10.1146/annurev.ge.23.120189.002523. [DOI] [PubMed] [Google Scholar]
  32. Talerico M., Berget S. M. Effect of 5' splice site mutations on splicing of the preceding intron. Mol Cell Biol. 1990 Dec;10(12):6299–6305. doi: 10.1128/mcb.10.12.6299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vogt B., Carrascosa J. M., Ermel B., Ullrich A., Häring H. U. The two isotypes of the human insulin receptor (HIR-A and HIR-B) follow different internalization kinetics. Biochem Biophys Res Commun. 1991 Jun 28;177(3):1013–1018. doi: 10.1016/0006-291x(91)90639-o. [DOI] [PubMed] [Google Scholar]
  34. Yamaguchi Y., Flier J. S., Yokota A., Benecke H., Backer J. M., Moller D. E. Functional properties of two naturally occurring isoforms of the human insulin receptor in Chinese hamster ovary cells. Endocrinology. 1991 Oct;129(4):2058–2066. doi: 10.1210/endo-129-4-2058. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES