Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Dec;74(12):5579–5583. doi: 10.1073/pnas.74.12.5579

DNA degradation in terminally differentiating lens fiber cells from chick embryos.

D W Appleby, S P Modak
PMCID: PMC431816  PMID: 271985

Abstract

During the terminal differentiation of lens fiber cells, nuclear DNA is known to accumulate free 3'-OH ends and is progressively lost from the nucleus. Toward the end of this process, nuclei undergo pycnosis and disappear. The size of the DNA in the epithelia and in early and late stages of fiber cell development was examined by electrophoresis on nondenaturing agarose/polyacrylamide gels. Low molecular weight DNA of discrete sizes appears only at the final stages of nuclear degeneration in central fiber cells and persists after the disappearance of the nuclei. These low molecular weight DNA fragments appear as multiples of a monomeric unit and are similar to the fragments produced by the digestion of epithelial cell nuclei by micrococcal nuclease. The data indicate that in lens fiber nuclei the double-strand breaks in vivo affect the chromatin during nuclear degeneration, and the data suggest that the DNA of these cells is organized into chromatin composed of discrete subunits.

Full text

PDF
5579

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hewish D. R., Burgoyne L. A. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun. 1973 May 15;52(2):504–510. doi: 10.1016/0006-291x(73)90740-7. [DOI] [PubMed] [Google Scholar]
  2. Lohr D., Corden J., Tatchell K., Kovacic R. T., Van Holde K. E. Comparative subunit structure of HeLa, yeast, and chicken erythrocyte chromatin. Proc Natl Acad Sci U S A. 1977 Jan;74(1):79–83. doi: 10.1073/pnas.74.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Marshall A. J., Burgoyne L. A. Interpretation of the properties of chromatin extracts from mammalian nuclei. Nucleic Acids Res. 1976 Apr;3(4):1101–1110. doi: 10.1093/nar/3.4.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. McDonell M. W., Simon M. N., Studier F. W. Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J Mol Biol. 1977 Feb 15;110(1):119–146. doi: 10.1016/s0022-2836(77)80102-2. [DOI] [PubMed] [Google Scholar]
  5. Modak S. P., Bollum F. J. Detection and measurement of single-strand breaks in nuclear DNA in fixed lens sections. Exp Cell Res. 1972 Dec;75(2):307–313. doi: 10.1016/0014-4827(72)90434-x. [DOI] [PubMed] [Google Scholar]
  6. Modak S. P., Bollum F. J. Terminal lens cell differentiation. 3. Initiator activity of DNA during nuclear degeneration. Exp Cell Res. 1970 Oct;62(2):421–432. doi: 10.1016/0014-4827(70)90573-2. [DOI] [PubMed] [Google Scholar]
  7. Modak S. P., Morris G., Yamada T. DNA synthesis and mitotic activity during early development of chick lens. Dev Biol. 1968 May;17(5):544–561. doi: 10.1016/0012-1606(68)90004-3. [DOI] [PubMed] [Google Scholar]
  8. Modak S. P., Perdue S. W. Terminal lens cell differentiation. I. Histological and microspectrophotometric analysis of nuclear degeneration. Exp Cell Res. 1970 Jan;59(1):43–56. doi: 10.1016/0014-4827(70)90622-1. [DOI] [PubMed] [Google Scholar]
  9. Modak S. P., Persons B. J. RNA synthesis during lens cell differentiation. Exp Cell Res. 1971 Feb;64(2):473–476. doi: 10.1016/0014-4827(71)90103-0. [DOI] [PubMed] [Google Scholar]
  10. Modak S. P., von Borstel R. C., Bollum F. J. Terminal lens cell differentiation. II. Template activity of DNA during nuclear degeneration. Exp Cell Res. 1969 Jul;56(1):105–113. doi: 10.1016/0014-4827(69)90401-7. [DOI] [PubMed] [Google Scholar]
  11. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  12. Persons B. J., Modak S. P. The pattern of DNA synthesis in the lens epithelium and the annular pad during development and growth of the chick lens. Exp Eye Res. 1970 Jan;9(1):144–151. doi: 10.1016/s0014-4835(70)80069-0. [DOI] [PubMed] [Google Scholar]
  13. Piatigorsky J., Rothschild S. S., Milstone L. M. Differentiation of lens fibers in explanted embryonic chick lens epithelia. Dev Biol. 1973 Oct;34(2):334–345. doi: 10.1016/0012-1606(73)90362-x. [DOI] [PubMed] [Google Scholar]
  14. Shaw B. R., Herman T. M., Kovacic R. T., Beaudreau G. S., Van Holde K. E. Analysis of subunit organization in chicken erythrocyte chromatin. Proc Natl Acad Sci U S A. 1976 Feb;73(2):505–509. doi: 10.1073/pnas.73.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Simpson R. T., Whitlock J. P., Jr Chemical evidence that chromatin DNA exists as 160 base pair beads interspersed with 40 base pair bridges. Nucleic Acids Res. 1976 Jan;3(1):117–127. doi: 10.1093/nar/3.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Skalka M., Matyásová J., Cejková M. Dna in chromatin of irradiated lymphoid tissues degrades in vivo into regular fragments. FEBS Lett. 1976 Dec 31;72(2):271–274. doi: 10.1016/0014-5793(76)80984-2. [DOI] [PubMed] [Google Scholar]
  17. Sollner-Webb B., Felsenfeld G. A comparison of the digestion of nuclei and chromatin by staphylococcal nuclease. Biochemistry. 1975 Jul;14(13):2915–2920. doi: 10.1021/bi00684a019. [DOI] [PubMed] [Google Scholar]
  18. Yang R. C., Van de Voorde A., Fiers W. Cleavage map of the simian-virus-40 genome by the restriction endonuclease III of Haemopholus aegyptius. Eur J Biochem. 1976 Jan 2;61(1):101–117. doi: 10.1111/j.1432-1033.1976.tb10002.x. [DOI] [PubMed] [Google Scholar]
  19. Yang R. C., Van de Voorde A., Fiers W. Specific cleavage and physical mapping of simian-virus-40 DNA by the restriction endonuclease of Arthrobacter luteus. Eur J Biochem. 1976 Jan 2;61(1):119–138. doi: 10.1111/j.1432-1033.1976.tb10003.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES