Abstract
Electrical activity in the form of action potentials (spikes) was discovered in normal anterior pituitary cells obtained from rats by tissue dissociation and maintained in culture. Passage of outward current through the microsuction electrodes used for recording often increased spike frequency in spontaneously active cells or initiated spikes in cells previously electrically silent. Spiking persisted in the presence of tetrodotoxin and in the absence of sodium, but was inhibited by the calcium blockers D600 and lanthanum. Such spikes appear, therefore, to be calcium spikes, but contributions to spiking by other ions are not excluded. The stimulant hypophysiotropic peptide thyrotropin-releasing hormone elicited spiking in about ten percent of the cells on which it was tested. These cells are possibly thyrotrophs and mammotrophs, the physiological target cells for this hormone. These results, considered along with existing evidence that adenohypophyseal secretion requires calcium and is elicited by calcium ionophores, prompt the conclusion that action potentials involving calcium influx participate in stimulus-secretion coupling in the anterior pituitary. It may be by stimulating or modulating such electrical activity (with hypophysiotropic hormones) that the brain regulates anterior pituitary secretion.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
- Biales B., Dichter M., Tischler A. Electrical excitability of cultured adrenal chromaffin cells. J Physiol. 1976 Nov;262(3):743–753. doi: 10.1113/jphysiol.1976.sp011618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bicknell R. J., Schofield J. G. Mechanism of action of somatostatin: inhibition of ionophore A23187-induced release of growth hormone from dispersed bovine pituitary cells. FEBS Lett. 1976 Sep 15;68(1):23–26. doi: 10.1016/0014-5793(76)80395-x. [DOI] [PubMed] [Google Scholar]
- Brandt B. L., Hagiwara S., Kidokoro Y., Miyazaki S. Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol. 1976 Dec;263(3):417–439. doi: 10.1113/jphysiol.1976.sp011638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dannies P. S., Tashjian A. R., Jr Effects of thyrotropin-releasing hormone and hydrocortisone on synthesis and degradation of prolactin in a rat pituitary cell strain. J Biol Chem. 1973 Sep 10;248(17):6174–6179. [PubMed] [Google Scholar]
- Davis M. D., Hadley M. E. Spontaneous electrical potentials and pituitary hormone (MSH) secretion. Nature. 1976 Jun 3;261(5559):422–423. doi: 10.1038/261422a0. [DOI] [PubMed] [Google Scholar]
- Dean P. M., Matthews E. K. Glucose-induced electrical activity in pancreatic islet cells. J Physiol. 1970 Sep;210(2):255–264. doi: 10.1113/jphysiol.1970.sp009207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dean P. M., Matthews E. K., Sakamoto Y. Pancreatic islet cells: effects of monosaccharides, glycolytic intermediates and metabolic inhibitors on membrane potential and electrical activity. J Physiol. 1975 Mar;246(2):459–478. doi: 10.1113/jphysiol.1975.sp010899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas W. W. Involvement of calcium in exocytosis and the exocytosis--vesiculation sequence. Biochem Soc Symp. 1974;(39):1–28. [PubMed] [Google Scholar]
- Douglas W. W. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol. 1968 Nov;34(3):451–474. doi: 10.1111/j.1476-5381.1968.tb08474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S. Ca spike. Adv Biophys. 1973;4:71–102. [PubMed] [Google Scholar]
- Hopkins C. R., Farquhar M. G. Hormone secretion by cells dissociated from rat anterior pituitaries. J Cell Biol. 1973 Nov;59(2 Pt 1):276–303. doi: 10.1083/jcb.59.2.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao C. Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol Rev. 1966 Jun;18(2):997–1049. [PubMed] [Google Scholar]
- Kidokoro Y. Spontaneous calcium action potentials in a clonal pituitary cell line and their relationship to prolactin secretion. Nature. 1975 Dec 25;258(5537):741–742. doi: 10.1038/258741a0. [DOI] [PubMed] [Google Scholar]
- Kohlhardt M., Bauer B., Krause H., Fleckenstein A. Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Pflugers Arch. 1972;335(4):309–322. doi: 10.1007/BF00586221. [DOI] [PubMed] [Google Scholar]
- Labrie F., De Lean A., Barden N., Ferland L., Drouin J., Borgeat P., Beaulieu M., Morin O. New aspects of the mechanism of action of hypothalamic regulatory hormones. Curr Top Mol Endocrinol. 1976;3:147–169. doi: 10.1007/978-1-4684-2598-7_10. [DOI] [PubMed] [Google Scholar]
- Matthews E. K., Sakamoto Y. Electrical characteristics of pancreatic islet cells. J Physiol. 1975 Mar;246(2):421–437. doi: 10.1113/jphysiol.1975.sp010897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakano H., Fawcett C. P., McCann S. M. Enzymatic dissociation and short-term culture of isolated rat anterior pituitary cells for studies on the control of hormone secretion. Endocrinology. 1976 Feb;98(2):278–288. doi: 10.1210/endo-98-2-278. [DOI] [PubMed] [Google Scholar]
- Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
- Pearse A. G., Takor T. T. Neuroendocrine embryology and the APUD concept. Clin Endocrinol (Oxf) 1976;5 (Suppl):229S–244S. doi: 10.1111/j.1365-2265.1976.tb03832.x. [DOI] [PubMed] [Google Scholar]
- Reuter H. Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol. 1973;26:1–43. doi: 10.1016/0079-6107(73)90016-3. [DOI] [PubMed] [Google Scholar]
- Tischler A. S., Dichter M. A., Biales B., DeLellis R. A., Wolfe H. Neural properties of cultured human endocrine tumor cells of proposed neural crest origin. Science. 1976 May 28;192(4242):902–904. doi: 10.1126/science.179139. [DOI] [PubMed] [Google Scholar]
- Vale W., Rivier C., Brown M. Regulatory peptides of the hypothalamus. Annu Rev Physiol. 1977;39:473–527. doi: 10.1146/annurev.ph.39.030177.002353. [DOI] [PubMed] [Google Scholar]
- York D. H., Baker F. L., Kraicer J. The effect of synthetic TRH on transmembrane potential and membrane resistance of adenohypophysial cells. Can J Physiol Pharmacol. 1975 Oct;53(5):777–786. doi: 10.1139/y75-107. [DOI] [PubMed] [Google Scholar]
