Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Oct;74(10):4271–4275. doi: 10.1073/pnas.74.10.4271

31P nuclear magnetic relaxation studies of phosphocreatine in intact muscle: determination of intracellular free magnesium.

S M Cohen, C T Burt
PMCID: PMC431921  PMID: 270670

Abstract

31P nuclear magnetic relaxation rates for phosphocreatine in intact frog gastrocnemius were compared with those observed in model solutions at 4 degrees, a temperature at which muscle maintains its physiological state for at least 5 hr. Both nuclear Overhauser effect and spin-lattice relaxation rate (1/T1) experiments indicate that dipole-dipole interactions from the dominant relaxation path for 31P in intact muscle and model solutions, independent of phosphocreatine and Mg concentrations. Spin-spin relaxation rates (1/T2) measured by modified Carr-Purcell-Melboom-Gill spin-echo experiments suggest the importance of scalar coupling modulated by chemical exchange with free Mg. From these results, we estimate the free intracellular Mg in intact muscle as 4.4 mM and demonstrate that 31P T2 experiments can be used as a tool for studying free Mg levels with minimum disturbance of the intact cell.

Full text

PDF
4271

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. BENDALL J. R. The shortening of rabbit muscles during rigor mortis; its relation to the breakdown of adenosine triphosphate and creatine phosphate and to muscular contraction. J Physiol. 1951 Jun;114(1-2):71–88. doi: 10.1113/jphysiol.1951.sp004604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brinley F. J., Jr, Scarpa A., Tiffert T. The concentration of ionized magnesium in barnacle muscle fibres. J Physiol. 1977 Apr;266(3):545–565. doi: 10.1113/jphysiol.1977.sp011781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burt C. T., Glonek T., Bárány M. Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J Biol Chem. 1976 May 10;251(9):2584–2591. [PubMed] [Google Scholar]
  5. Davis M. M. GROUP MEDICINE. Am J Public Health (N Y) 1919 May;9(5):358–362. doi: 10.2105/ajph.9.5.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dawson M. J., Gadian D. G., Wilkie D. R. Contraction and recovery of living muscles studies by 31P nuclear magnetic resonance. J Physiol. 1977 Jun;267(3):703–735. doi: 10.1113/jphysiol.1977.sp011835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henderson T. O., Costello A. J., Omachi A. Phosphate metabolism in intact human erythrocytes: determination by phosphorus-31 nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2487–2490. doi: 10.1073/pnas.71.6.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoult D. I., Busby S. J., Gadian D. G., Radda G. K., Richards R. E., Seeley P. J. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature. 1974 Nov 22;252(5481):285–287. doi: 10.1038/252285a0. [DOI] [PubMed] [Google Scholar]
  9. Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
  10. NANNINGA L. B. Calculation of free magnesium, calcium and potassium in muscle. Biochim Biophys Acta. 1961 Dec 9;54:338–344. doi: 10.1016/0006-3002(61)90374-2. [DOI] [PubMed] [Google Scholar]
  11. Navon G., Ogawa S., Shulman R. G., Yamane T. 31P nuclear magnetic resonance studies of Ehrlich ascites tumor cells. Proc Natl Acad Sci U S A. 1977 Jan;74(1):87–91. doi: 10.1073/pnas.74.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Navon G., Ogawa S., Shulman R. G., Yamane T. High-resolution 31P nuclear magnetic resonance studies of metabolism in aerobic Escherichia coli cells. Proc Natl Acad Sci U S A. 1977 Mar;74(3):888–891. doi: 10.1073/pnas.74.3.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rapoport S. I., Bidinger J. M. Effect of stretch on contractility and ionic contents of the sartorius muscle of Rana pipiens. Am J Physiol. 1974 Feb;226(2):452–457. doi: 10.1152/ajplegacy.1974.226.2.452. [DOI] [PubMed] [Google Scholar]
  14. Salhany J. M., Yamane T., Shulman R. G., Ogawa S. High resolution 31P nuclear magnetic resonance studies of intact yeast cells. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4966–4970. doi: 10.1073/pnas.72.12.4966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stephenson E. W., Podolsky R. J. Regulation by magnesium of intracellular calcium movement in skinned muscle fibers. J Gen Physiol. 1977 Jan;69(1):1–16. doi: 10.1085/jgp.69.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES