Abstract
A peptide having 92 amino acid residues and a calculated molecular weight of 10,478 was isolated from a cyanogen bromide digest of rabbit skeletal muscle myosin. It contained both proline and Ntau-methylhistidine, indicating that it arose from the portion of the heavy chain that folds to form most of the globular head of the myosin molecule. The amino acid sequence of the peptide included the two sulfhydryl groups whose alkylation modifies myosin's catalytic properties: SH-2 at position 11 in the peptide, and SH-1 at position 21. This proximity in the sequence means that SH-1 and SH-2 must be relatively close together in myosin, and several lines of evidence suggest that this region is near the catalytic or actin binding site(s) of myosin.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asatoor A. M., Armstrong M. D. 3-methylhistidine, a component of actin. Biochem Biophys Res Commun. 1967 Jan 23;26(2):168–174. doi: 10.1016/0006-291x(67)90229-x. [DOI] [PubMed] [Google Scholar]
- Bridgen J. Solid phase sequencing: a new support for the high sensitivity degradation of peptides and proteins. FEBS Lett. 1975 Feb 1;50(2):159–162. doi: 10.1016/0014-5793(75)80479-0. [DOI] [PubMed] [Google Scholar]
- Bárány M., Bailin G., Bárány K. Reaction of myosin with 1-fluoro-2, 4-dinitrobenzene at low ionic strength. J Biol Chem. 1969 Feb 25;244(4):648–657. [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
- Collins J. H. Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin. Nature. 1976 Feb 26;259(5545):699–700. doi: 10.1038/259699a0. [DOI] [PubMed] [Google Scholar]
- Elzinga M. Amino acid sequence studies on rabbit skeletal muscle actin. Cyanogen bromide cleavage of the protein and determination of the sequences of seven of the resulting peptides. Biochemistry. 1970 Mar 17;9(6):1365–1374. doi: 10.1021/bi00808a010. [DOI] [PubMed] [Google Scholar]
- Frank G., Weeds A. G. The amino-acid sequence of the alkali light chains of rabbit skeletal-muscle myosin. Eur J Biochem. 1974 May 15;44(2):317–334. doi: 10.1111/j.1432-1033.1974.tb03489.x. [DOI] [PubMed] [Google Scholar]
- GROESCHEL-STEWART U., RUEDIGER H., TURBA F. ZUR SELEKTIVEN HEMMUNG UND LOKALISIERUNG DER CALCIUM-SENSITIVEN ADENOSINTRIPHOSPHATASE IM H-MEROMYOSIN. Biochem Z. 1964 Jun 16;339:539–542. [PubMed] [Google Scholar]
- GROESCHEL-STEWART U., TURBA F. [Correlation of adenosine triphosphatase and the actin-binding capacity of H-meromyosin to determine SH-regions]. Biochem Z. 1963;337:109–114. [PubMed] [Google Scholar]
- Hardy M. F., Perry S. V. In vitro methylation of muscle proteins. Nature. 1969 Jul 19;223(5203):300–302. doi: 10.1038/223300a0. [DOI] [PubMed] [Google Scholar]
- Horn M. J., Laursen R. A. Solid-phase edman degradation: attachment of carboxyl-terminal homoserine peptides to an insoluble resin. FEBS Lett. 1973 Nov 1;36(3):285–288. doi: 10.1016/0014-5793(73)80392-8. [DOI] [PubMed] [Google Scholar]
- Huszar G., Elzinga M. Homologous methylated and nonmethylated histidine peptides in skeletal and cardiac myosins. J Biol Chem. 1972 Feb 10;247(3):745–753. [PubMed] [Google Scholar]
- Huszar G. Tissue-specific biosynthesis of epsilon-N-monomethyllysine and epsilon-N-trimethyllysine in skeletal and cardiac muscle myosin: a model for the cell-free study of post-translational amino acid modifications in proteins. J Mol Biol. 1975 May 25;94(3):311–326. doi: 10.1016/0022-2836(75)90205-3. [DOI] [PubMed] [Google Scholar]
- KIELLEY W. W., BRADLEY L. B. The relationship between sulfhydryl groups and the activation of myosin adenosinetriphosphatase. J Biol Chem. 1956 Feb;218(2):653–659. [PubMed] [Google Scholar]
- KUBO S., TOKUYAMA H., TONOMURA Y. ON THE ACTIVE SITE OF MYOSIN A-ADENOSINE TRIPHOSPHATASE. V. PARTIAL SOLUTION OF THE CHEMICAL STRUCTURE AROUND THE BINDING SITE OF TRINITROBENZENESULFONATE. Biochim Biophys Acta. 1965 May 4;100:459–470. doi: 10.1016/0304-4165(65)90016-4. [DOI] [PubMed] [Google Scholar]
- Laursen R. A. Solid-phase Edman degradation. An automatic peptide sequencer. Eur J Biochem. 1971 May 11;20(1):89–102. doi: 10.1111/j.1432-1033.1971.tb01366.x. [DOI] [PubMed] [Google Scholar]
- Lowey S., Goldstein L., Cohen C., Luck S. M. Proteolytic degradation of myosin and the meromyosins by a water-insoluble polyanionic derivative of trypsin: properties of a helical subunit isolated from heavy meromyosin. J Mol Biol. 1967 Feb 14;23(3):287–304. doi: 10.1016/s0022-2836(67)80106-2. [DOI] [PubMed] [Google Scholar]
- MUELLER H., PERRY S. V. The degradation of heavy meromyosin by trypsin. Biochem J. 1962 Dec;85:431–439. doi: 10.1042/bj0850431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannherz H. G., Goody R. S. Proteins of contractile systems. Annu Rev Biochem. 1976;45:427–465. doi: 10.1146/annurev.bi.45.070176.002235. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
- Reisler E., Burke M., Harrington W. F. Cooperative role of two sulfhydryl groups in myosin adenosine triphosphatase. Biochemistry. 1974 May 7;13(10):2014–2022. doi: 10.1021/bi00707a003. [DOI] [PubMed] [Google Scholar]
- Reisler E., Burke M., Himmelfarb S., Harrington W. F. Spatial proximity of the two essential sulfhydryl groups of myosin. Biochemistry. 1974 Sep 10;13(19):3837–3840. doi: 10.1021/bi00716a001. [DOI] [PubMed] [Google Scholar]
- Riordan J. F., McElvany K. D., Borders C. L., Jr Arginyl residues: anion recognition sites in enzymes. Science. 1977 Mar 4;195(4281):884–886. doi: 10.1126/science.190679. [DOI] [PubMed] [Google Scholar]
- SEKINE T., BARNETT L. M., KIELLEY W. W. The active site of myosin adenosine triphosphatase. I. Localization of one of the sulfhydryl groups. J Biol Chem. 1962 Sep;237:2769–2772. [PubMed] [Google Scholar]
- Seidel J. C. The effects of actin on the electron spin resonance of spin-labeled myosin. Arch Biochem Biophys. 1973 Aug;157(2):588–596. doi: 10.1016/0003-9861(73)90678-4. [DOI] [PubMed] [Google Scholar]
- Smithies O., Gibson D., Fanning E. M., Goodfliesh R. M., Gilman J. G., Ballantyne D. L. Quantitative procedures for use with the Edman-Begg sequenator. Partial sequences of two unusual immunoglobulin light chains, Rzf and Sac. Biochemistry. 1971 Dec 21;10(26):4912–4921. doi: 10.1021/bi00802a013. [DOI] [PubMed] [Google Scholar]
- Starr R., Offer G. Polarity of the myosin molecule. J Mol Biol. 1973 Nov 25;81(1):17–31. doi: 10.1016/0022-2836(73)90244-1. [DOI] [PubMed] [Google Scholar]
- Swank R. T., Munkres K. D. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971 Feb;39(2):462–477. doi: 10.1016/0003-2697(71)90436-2. [DOI] [PubMed] [Google Scholar]
- Takamori K., Kato K. A., Sekine T. Thiols of myosin. IV. "Abnormal" reactivity of S1 thiol and the conformational changes around S2 thiol. J Biochem. 1976 Jul;80(1):101–110. doi: 10.1093/oxfordjournals.jbchem.a131241. [DOI] [PubMed] [Google Scholar]
- Trayer I. P., Harris C. I., Perry S. V. 3-Methyl histidine and adult and foetal forms of skeletal muscle myosin. Nature. 1968 Feb 3;217(5127):452–453. doi: 10.1038/217452a0. [DOI] [PubMed] [Google Scholar]
- Weeds A. G., Hartley B. S. Selective purification of the thiol peptides of myosin. Biochem J. 1968 Apr;107(4):531–548. doi: 10.1042/bj1070531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YAMASHITA T., SOMA Y., KOBAYASHI S., SEKINE T. THE AMINO ACID SEQUENCE AT THE ACTIVE SITE OF MYOSIN A ADENOSINE TRIPHOSPHATASE ACTIVATED BY CA++. J Biochem. 1965 Mar;57:460–461. doi: 10.1093/oxfordjournals.jbchem.a128103. [DOI] [PubMed] [Google Scholar]
- YAMASHITA T., SOMA Y., KOBAYASHI S., SEKINE T., TITANI K., NARITA K. THE AMINO ACID SEQUENCE AT THE ACTIVE SITE OF MYOSIN A ADENOSINE TRIPHOSPHATASE ACTIVATED BY EDTA. J Biochem. 1964 May;55:576–577. [PubMed] [Google Scholar]
- Yamaguchi M., Sekine T. Sulfhydryl groups involved in the active site of myosin A adenosine triphosphatase. I. Specific blocking of the SH group responsible for the inhibitory phase in "B phasic response" of the catalytic activity. J Biochem. 1966 Jan;59(1):24–33. doi: 10.1093/oxfordjournals.jbchem.a128254. [DOI] [PubMed] [Google Scholar]
- Yamashita T., Soma Y., Kobayashi S., Sekine T. The amino acid sequence of SH-peptides involved in the active site of myosin A adenosinetriphosphatase. J Biochem. 1974 Mar;75(3):447–453. doi: 10.1093/oxfordjournals.jbchem.a130413. [DOI] [PubMed] [Google Scholar]