Abstract
With an assay that quantitates the transfer of 6-thioguanylic acid from hypoxanthine phosphoribosyltransferase (IMP:pyrophosphate phosphoribosyltransferase, EC 2.4.2.8)-positive donor cells to negative recipient cells through gap junctions, differences in contact-mediated communication between normal and transformed human cells in culture have been detected. We have compared cells cultured from human tumors and simian virus 40-transformed cells with the normal human fibroblasts from which they were derived as well as with gap junction-deficient L cells. The communication, which is extensive in normal cells, is significantly reduced when transformed cells are used as either donors or recipients in the contact-feeding assay. Furthermore, the reduction in the transfer of nucleotides is enhanced when transformed cells are used as both donors and recipients, indicating a dosage effect or synergism, independent of enzyme activity. Fetal cells have a contact-feeding phenotype intermediate between that of normal and that of transformed cells. We suggest that the decrease in communication of nucleotides in transformed cells reflects quantitative or qualitative changes in membrane components responsible for gap junction formation.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander P. Foetal "antigens" in cancer. Nature. 1972 Jan 21;235(5334):137–140. doi: 10.1038/235137a0. [DOI] [PubMed] [Google Scholar]
- Azarnia R., Larsen W. J., Loewenstein W. R. The membrane junctions in communicating and noncommunicating cells, their hybrids, and segregants. Proc Natl Acad Sci U S A. 1974 Mar;71(3):880–884. doi: 10.1073/pnas.71.3.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azarnia R., Loewenstein W. R. Intercellular communication and tissue growth: VII. A cancer cell strain with retarded formation of permeable membrane junction and reduced exchange of a 330-dalton molecule. J Membr Biol. 1976 Dec 28;30(2):175–186. doi: 10.1007/BF01869666. [DOI] [PubMed] [Google Scholar]
- Azarnia R., Michalke W., Loewenstein W. R. Intercellular communication and tissue growth. VI. Failure of exchange of endogeneous molecules between cancer cells with defective junctions and noncancerous cells. J Membr Biol. 1972 Dec 29;10(3):247–258. doi: 10.1007/BF01867858. [DOI] [PubMed] [Google Scholar]
- Bennett M. V. Function of electrotonic junctions in embryonic and adult tissues. Fed Proc. 1973 Jan;32(1):65–75. [PubMed] [Google Scholar]
- Corsaro C. M., Migeon B. R. Quantitation of contact-feeding between somatic cells in culture. Exp Cell Res. 1975 Oct 1;95(1):39–46. doi: 10.1016/0014-4827(75)90606-0. [DOI] [PubMed] [Google Scholar]
- Cox R. P., Krauss M. R., Balis M. E., Dancis J. Communication between normal and enzyme deficient cells in tissue culture. Exp Cell Res. 1972 Sep;74(1):251–268. doi: 10.1016/0014-4827(72)90503-4. [DOI] [PubMed] [Google Scholar]
- Cox R. P., Krauss M. R., Balis M. E., Dancis J. Evidence for transfer of enzyme product as the basis of metabolic cooperation between tissue culture fibroblasts of Lesch-Nyhan disease and normal cells. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1573–1579. doi: 10.1073/pnas.67.3.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Croce C. M., Koprowski H. Somatic cell hybrids between mouse peritoneal macrophages and SV40-transformed human cells. I. Positive control of the transformed phenotype by the human chromosome 7 carrying the SV40 genome. J Exp Med. 1974 Nov 1;140(5):1221–1229. doi: 10.1084/jem.140.5.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Croce C. M. Loss of mouse chromosomes in somatic cell hybrids between HT-1080 human fibrosarcoma cells and mouse peritioneal macrophages. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3248–3252. doi: 10.1073/pnas.73.9.3248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furshpan E. J., Potter D. D. Low-resistance junctions between cells in embryos and tissue culture. Curr Top Dev Biol. 1968;3:95–127. doi: 10.1016/s0070-2153(08)60352-x. [DOI] [PubMed] [Google Scholar]
- Gilula N. B., Reeves O. R., Steinbach A. Metabolic coupling, ionic coupling and cell contacts. Nature. 1972 Feb 4;235(5336):262–265. doi: 10.1038/235262a0. [DOI] [PubMed] [Google Scholar]
- Hülser D. F., Webb D. J. Relation between ionic coupling and morphology of established cells in culture. Exp Cell Res. 1973 Jul;80(1):210–222. doi: 10.1016/0014-4827(73)90291-7. [DOI] [PubMed] [Google Scholar]
- Jamakosmanović A., Loewenstein W. R. Cellular uncoupling in cancerous thyroid epithelium. Nature. 1968 May 25;218(5143):775–775. doi: 10.1038/218775a0. [DOI] [PubMed] [Google Scholar]
- Kanno Y., Matsui Y. Cellular uncoupling in cancerous stomach epithelium. Nature. 1968 May 25;218(5143):775–776. doi: 10.1038/218775b0. [DOI] [PubMed] [Google Scholar]
- Loewenstein W. R., Kanno Y. Intercellular communication and tissue growth. I. Cancerous growth. J Cell Biol. 1967 May;33(2):225–234. doi: 10.1083/jcb.33.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loewenstein W. R. Permeability of membrane junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):441–472. doi: 10.1111/j.1749-6632.1966.tb50175.x. [DOI] [PubMed] [Google Scholar]
- McNutt N. S., Weinstein R. S. Carcinoma of the cervix: deficiency of nexus intercellular junctions. Science. 1969 Aug 8;165(3893):597–599. doi: 10.1126/science.165.3893.597. [DOI] [PubMed] [Google Scholar]
- McNutt N. S., Weinstein R. S. Membrane ultrastructure at mammalian intercellular junctions. Prog Biophys Mol Biol. 1973;26:45–101. doi: 10.1016/0079-6107(73)90017-5. [DOI] [PubMed] [Google Scholar]
- Mitsui Y., Schneider E. L. Relationship between cell replication and volume in senescent human diploid fibroblasts. Mech Ageing Dev. 1976 Jan-Feb;5(1):45–56. doi: 10.1016/0047-6374(76)90007-5. [DOI] [PubMed] [Google Scholar]
- Pitts J. D., Simms J. W. Permeability of junctions between animal cells. Intercellular transfer of nucleotides but not of macromolecules. Exp Cell Res. 1977 Jan;104(1):153–163. doi: 10.1016/0014-4827(77)90078-7. [DOI] [PubMed] [Google Scholar]
- Povey S., Hopkinson D. A., Harris H., Franks L. M. Characterisation of human cell lines and differentiation from HeLa by enzyme typing. Nature. 1976 Nov 4;264(5581):60–63. doi: 10.1038/264060b0. [DOI] [PubMed] [Google Scholar]
- Rasheed S., Nelson-Rees W. A., Toth E. M., Arnstein P., Gardner M. B. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer. 1974 Apr;33(4):1027–1033. doi: 10.1002/1097-0142(197404)33:4<1027::aid-cncr2820330419>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
- Romeo G., Migeon B. R. Stability of X chromosomal inactivation in human somatic cells transformed by SV-40. Humangenetik. 1975 Sep 10;29(2):165–170. doi: 10.1007/BF00430356. [DOI] [PubMed] [Google Scholar]
- Roth S. A molecular model for cell interactions. Q Rev Biol. 1973 Dec;48(4):541–563. doi: 10.1086/407816. [DOI] [PubMed] [Google Scholar]
- Sheridan J. D. Low-resistance junctions between cancer cells in various solid tumors. J Cell Biol. 1970 Apr;45(1):91–99. doi: 10.1083/jcb.45.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanbridge E. J. Suppression of malignancy in human cells. Nature. 1976 Mar 4;260(5546):17–20. doi: 10.1038/260017a0. [DOI] [PubMed] [Google Scholar]
- Subak-Sharpe H., Bürk R. R., Pitts J. D. Metabolic co-operation between biochemically marked mammalian cells in tissue culture. J Cell Sci. 1969 Mar;4(2):353–367. doi: 10.1242/jcs.4.2.353. [DOI] [PubMed] [Google Scholar]
- Weinstein R. S., Merk F. B., Alroy J. The structure and function of intercellular junctions in cancer. Adv Cancer Res. 1976;23:23–89. doi: 10.1016/s0065-230x(08)60543-6. [DOI] [PubMed] [Google Scholar]

