Abstract
In spite of the critical role of the process of adaptation in evolution, there are few detailed studies of the genotypic and molecular basis of the process. Drosophila melanogaster flies selected for increased tolerance to ethanol exhibited higher levels of alcohol dehydrogenase (alcohol:NAD+ oxidoreductase; EC 1.1.1.1) activity than unselected controls. A series of tests (electrophoresis, product inhibition, temperature stability, pH optima, substrate specificity, and Michaelis constants) gave no evidence of structural differences in the enzyme of the selected and the control flies. However, quantitative immunological assays showed that the selected flies contained significantly higher amounts of alcohol dehydrogenase. Adaptation of the selected flies to higher alcohol tolerance has most likely taken place by changes not in the structural gene locus coding for the enzyme, but by regulatory changes affecting the amount of gene product.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLISON A. C. Aspects of polymorphism in man. Cold Spring Harb Symp Quant Biol. 1955;20:239-51; discussion, 251-5. doi: 10.1101/sqb.1955.020.01.023. [DOI] [PubMed] [Google Scholar]
- Ayala F. J., Powell J. R., Tracey M. L., Mourão C. A., Pérez-Salas S. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics. 1972 Jan;70(1):113–139. doi: 10.1093/genetics/70.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein S. C., Throckmorton L. H., Hubby J. L. Still more genetic variability in natural populations. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3928–3931. doi: 10.1073/pnas.70.12.3928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britten R. J., Davidson E. H. Gene regulation for higher cells: a theory. Science. 1969 Jul 25;165(3891):349–357. doi: 10.1126/science.165.3891.349. [DOI] [PubMed] [Google Scholar]
- Britten R. J., Davidson E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q Rev Biol. 1971 Jun;46(2):111–138. doi: 10.1086/406830. [DOI] [PubMed] [Google Scholar]
- Chovnick A., Gelbart W., McCarron M., Osmond B. Organization of the rosy locus in Drosophila melanogaster: evidence for a control element adjacent to the xanthine dehydrogenase structural element. Genetics. 1976 Oct;84(2):233–255. doi: 10.1093/genetics/84.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke H. G., Freeman T. Quantitative immunoelectrophoresis of human serum proteins. Clin Sci. 1968 Oct;35(2):403–413. [PubMed] [Google Scholar]
- Clegg M. T., Allard R. W. Patterns of Genetic Differentiation in the Slender Wild Oat Species Avena barbata. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1820–1824. doi: 10.1073/pnas.69.7.1820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Courtright J. B. Polygenic control of aldehyde oxidase in Drosophila. Genetics. 1967 Sep;57(1):25–39. doi: 10.1093/genetics/57.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day T. H., Hillier P. C., Clarke B. The relative quantities and catalytic activities of enzymes produced by alleles at the alcohol dehydrogenase locus in Drosophila melanogaster. Biochem Genet. 1974 Feb;11(2):155–165. doi: 10.1007/BF00485771. [DOI] [PubMed] [Google Scholar]
- Day T. H., Needham L. Properties of alcohol dehydrogenase isozymes in a strain of Drosophila melanogaster homozygous for the Adh-slow allele. Biochem Genet. 1974 Feb;11(2):167–175. doi: 10.1007/BF00485772. [DOI] [PubMed] [Google Scholar]
- Elliott J. I., Knopp J. A. Alcohol dehydrogenase from Drosophila melanogaster. Methods Enzymol. 1975;41:374–379. doi: 10.1016/s0076-6879(75)41083-7. [DOI] [PubMed] [Google Scholar]
- Francis J. C., Hansche P. E. Directed Evolution of Metabolic Pathways in Microbial Populations II. a Repeatable Adaptation in SACCHAROMYCES CEREVISIAE. Genetics. 1973 Jun;74(2):259–265. doi: 10.1093/genetics/74.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson J. Enzyme flexibility in Drosophila melanogaster. Nature. 1970 Aug 29;227(5261):959–960. doi: 10.1038/227959a0. [DOI] [PubMed] [Google Scholar]
- Hegeman G. D., Rosenberg S. L. The evolution of bacterial enzyme systems. Annu Rev Microbiol. 1970;24:429–462. doi: 10.1146/annurev.mi.24.100170.002241. [DOI] [PubMed] [Google Scholar]
- Hewitt N. E., Pipkin S. B., Williams N., Chakrabartty P. K. Variation in ADH activity in class I and class II strains of Drosophila. J Hered. 1974 May-Jun;65(3):141–148. doi: 10.1093/oxfordjournals.jhered.a108485. [DOI] [PubMed] [Google Scholar]
- LERNER S. A., WU T. T., LIN E. C. EVOLUTION OF A CATABOLIC PATHWAY IN BACTERIA. Science. 1964 Dec 4;146(3649):1313–1315. doi: 10.1126/science.146.3649.1313. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laurell C. B. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem. 1966 Apr;15(1):45–52. doi: 10.1016/0003-2697(66)90246-6. [DOI] [PubMed] [Google Scholar]
- McDonald J. F., Avise J. C. Evidence for the adaptive significance of enzyme activity levels: interspecific variation in alpha-GPDH and ADH in Drosophila. Biochem Genet. 1976 Apr;14(3-4):347–355. doi: 10.1007/BF00484773. [DOI] [PubMed] [Google Scholar]
- McKenzie J. A., Parsons P. A. Microdifferentiation in a natural population of Drosophila melanogaster to alcohol in the environment. Genetics. 1974 Jun;77(2):385–394. doi: 10.1093/genetics/77.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merritt A. D., Rivas M. L., Ward J. C. Evidence for close linkage of human amylase loci. Nat New Biol. 1972 Oct 25;239(95):243–244. doi: 10.1038/newbio239243a0. [DOI] [PubMed] [Google Scholar]
- Milkman R. Further evidence of thermostability variation within electrophoretic mobility classes of enzymes. Biochem Genet. 1976 Apr;14(3-4):383–387. doi: 10.1007/BF00484776. [DOI] [PubMed] [Google Scholar]
- OSSERMAN E. F. A modified technique of immunoelectrophoresis facilitating the identification of specific precipitin arcs. J Immunol. 1960 Jan;84:93–97. [PubMed] [Google Scholar]
- OUCHTERLONY O. Antigen-antibody reactions in gels. IV. Types of reactions in coordinated systems of diffusion. Acta Pathol Microbiol Scand. 1953;32(2):230–240. [PubMed] [Google Scholar]
- Pipkin S. B., Hewitt N. E. Effect of gene dosage on level of alcohol dehydrogenase in Drosophila. J Hered. 1972 Nov-Dec;63(6):331–336. doi: 10.1093/oxfordjournals.jhered.a108310. [DOI] [PubMed] [Google Scholar]
- Rucknagel D. L. The genetics of sickle cell anemia and related syndromes. Arch Intern Med. 1974 Apr;133(4):595–606. [PubMed] [Google Scholar]
- Sernia C., McDonald I. R. Adrenocortical function in a prototherian mammal, Tachyglossus aculeatus (Shaw). J Endocrinol. 1977 Jan;72(1):41–52. doi: 10.1677/joe.0.0720041. [DOI] [PubMed] [Google Scholar]
- Sofer W., Ursprung H. Drosophila alcohol dehydrogenase. Purification and partial characterization. J Biol Chem. 1968 Jun 10;243(11):3110–3115. [PubMed] [Google Scholar]
- Valentine J. W., Campbell C. A. Genetic regulation and the fossil record. Am Sci. 1975 Nov-Dec;63(6):673–680. [PubMed] [Google Scholar]
- Vigue C. L., Johnson F. M. Isozyme variability in species of the genus Drosophila. VI. Frequency-property-environment relationships of allelic alcohol dehydrogenases in D. melanogaster. Biochem Genet. 1973 Jul;9(3):213–227. doi: 10.1007/BF00485735. [DOI] [PubMed] [Google Scholar]
- Ward R. D. Alcohol dehydrogenase activity in Drosophila melanogaster: a quantitative character. Genet Res. 1975 Aug;26(1):81–93. doi: 10.1017/s0016672300015871. [DOI] [PubMed] [Google Scholar]
- Wills C. Production of yeast alcohol dehydrogenase isoenzymes by selection. Nature. 1976 May 6;261(5555):26–29. doi: 10.1038/261026a0. [DOI] [PubMed] [Google Scholar]