Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Oct;74(10):4595–4599. doi: 10.1073/pnas.74.10.4595

Differential lateral mobility of IgM and IgG receptors in mouse B lymphocyte membranes

Keith A Krolick 1,2,*, Bernadine J Wisnieski 1,2,, Eli E Sercarz 1,2
PMCID: PMC431993  PMID: 337299

Abstract

Anti-Ig induced redistribution of different Ig subclasses was studied as a function of temperature and correlated with membrane phase transitions as revealed by electron spin resonance spectroscopy. Fluorescein isothiocyanate-coupled anti-IgG2 and anti-IgM antibodies induced patching and capping that proceeded with increasing rates from 2° to 40° (measured at 2° intervals). Characteristic temperatures marked the onset of discontinuities in such rate changes. IgG2-bearing lymphocytes displayed discontinuities at 14°, 22°, 28°, and 36°, whereas IgM-bearing lymphocytes displayed discontinuities at 18°, 24°, 32°, and 38°. Electron spin resonance spectroscopy studies using the spin label 2,2-dimethyl-4-butyl-4-penty-N-oxyloxazolidine, a nitroxide-substituted decane, indicated that these temperatures are a function of hydrocarbon phase separations in the B lymphocyte membrane. With a glucosamine-derivative [2-(10-carboxydecyl)-2-hexyl-4,4-dimethyl-3-oxazolidinyloxyl glucosamide] as a probe restricted to the outer monolayer of the plasma membrane, the temperatures 14° and 28° denoted the onset and end, respectively, of a fluidizing process in the outer monolayers of IgG2-bearing lymphocytes. Temperatures of 18° and 32° denoted these boundaries in IgM-bearing lymphocytes. Inner monolayer transitions are associated with the remaining temperatures. We conclude that membranes of IgM-bearing lymphocytes are less fluid than those of IgG2-bearing lymphocytes.

Keywords: membrane fluidity, electron spin resonance spectroscopy

Full text

PDF
4595

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ault K. A., Unanue E. R. Events after the binding of antigen to lymphocytes: removal and regeneration of the antigen receptor. J Exp Med. 1974 May 1;139(5):1110–1124. doi: 10.1084/jem.139.5.1110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bretscher M. S. Membrane structure: some general principles. Science. 1973 Aug 17;181(4100):622–629. doi: 10.1126/science.181.4100.622. [DOI] [PubMed] [Google Scholar]
  3. Cooper M. D., Kearney J. F., Lawton A. R., Abney E. R., Parkhouse R. M., Preud'homme J. L., Seligmann M. Generation of immunoglobulin class diversity in b cells: a discussion with emphasis on idg development. Ann Immunol (Paris) 1976 Jun-Jul;127(3-4):573–581. [PubMed] [Google Scholar]
  4. Grinna L. S. Multiple thermal discontinuities in glucose-6-phosphatase activity. Biochim Biophys Acta. 1975 Oct 22;403(2):388–392. doi: 10.1016/0005-2744(75)90067-4. [DOI] [PubMed] [Google Scholar]
  5. Karnovsky M. J., Unanue E. R. Mapping and migration of lymphocyte surface macromolecules. Fed Proc. 1973 Jan;32(1):55–59. [PubMed] [Google Scholar]
  6. Owen J. J., Raff M. C. Studies on the differentiation of thymus-derived lymphocytes. J Exp Med. 1970 Dec 1;132(6):1216–1232. doi: 10.1084/jem.132.6.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Petit V. A., Edidin M. Lateral phase separation of lipids in plasma membranes: effect of temperature on the mobility of membrane antigens. Science. 1974 Jun 14;184(4142):1183–1185. doi: 10.1126/science.184.4142.1183. [DOI] [PubMed] [Google Scholar]
  8. Rothman J. E., Dawidowicz E. A. Asymmetric exchange of vesicle phospholipids catalyzed by the phosphatidylcholine exhange protein. Measurement of inside--outside transitions. Biochemistry. 1975 Jul;14(13):2809–2816. doi: 10.1021/bi00684a004. [DOI] [PubMed] [Google Scholar]
  9. Shimshick E. J., McConnell H. M. Lateral phase separation in phospholipid membranes. Biochemistry. 1973 Jun 5;12(12):2351–2360. doi: 10.1021/bi00736a026. [DOI] [PubMed] [Google Scholar]
  10. Ueda M. J., Ito T., Okada T. S., Ohnishi S. I. A correlation between membrane fluidity and the critical temperature for cell adhesion. J Cell Biol. 1976 Nov;71(2):670–674. doi: 10.1083/jcb.71.2.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Unanue E. R., Karnovsky M. J., Engers H. D. Ligand-induced movement of lymphocyte membrane macromolecules. 3. Relationship between the formation and fate of anti-Ig-surface Ig complexes and cell metabolism. J Exp Med. 1973 Mar 1;137(3):675–689. doi: 10.1084/jem.137.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vitetta E. S., Uhr J. W. Immunoglobulin-receptors revisited. Science. 1975 Sep 19;189(4207):964–969. doi: 10.1126/science.1083069. [DOI] [PubMed] [Google Scholar]
  13. Wisnieski B. J., Huang Y. O., Fox C. F. Physical properties of the lipid phase of membranes from cultured animal cells. J Supramol Struct. 1974;2(5-6):593–608. doi: 10.1002/jss.400020507. [DOI] [PubMed] [Google Scholar]
  14. Wisnieski B. J., Iwata K. K. Electron spin resonance evidence for vertical asymmetry in animal cell membranes. Biochemistry. 1977 Apr 5;16(7):1321–1326. doi: 10.1021/bi00626a013. [DOI] [PubMed] [Google Scholar]
  15. Wisnieski B. J., Parkes J. G., Huang Y. O., Fox C. F. Physical and physiological evidence for two phase transitions in cytoplasmic membranes of animal cells. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4381–4385. doi: 10.1073/pnas.71.11.4381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. de Petris S., Raff M. C. Normal distribution, patching and capping of lymphocyte surface immunoglobulin studied by electron microscopy. Nat New Biol. 1973 Feb 28;241(113):257–259. doi: 10.1038/newbio241257a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES