Abstract
The ionophore lasalocid A forms 1:1 complexes with phenethylamines (1-amino-1-phenylethane and 1-amino-2-phenylethane) and catecholamines (dopamine and norepinephrine) in nonpolar solution. We have undertaken high-resolution proton nuclear magnetic resonance studies to deduce structural and kinetic information on the ionophore-biogenic amine complexes in chloroform solution. The coupling constant, chemical shift, and relaxation time data demonstrate that the lasalocid backbone conformation and the primary amine binding sites in the complexes are similar to those determined earlier for the alkali and alkaline earth complexes of this ionophore in solution. The exchange of lasalocid between the free acid (HX) and the primary amine complexes (RNH3X) in chloroform solution have been evaluated from the temperature-dependent line shapes at superconducting fields. The kinetic parameters associated with the unimolecular dissociation [Formula: see text] and the bimolecular exchange [Formula: see text] reactions have been deduced from an analysis of the lifetime of the complex as a function of the reactant concentrations. The relative stability of the complex decreases in the order phenyl > n-pentyl for substituents on the carbon α to the amino group (1-amino-1-phenylethane and 2-aminoheptane) and phenyl > 3,4-dihydroxyphenyl for substituents on the carbon β to the amino group (1-amino-2-phenylethane and dopamine). These results suggest that nonpolar interactions between the biogenic amine side chain and the lasalocid molecule contribute to the stability of the complex in solution.
Keywords: nuclear magnetic resonance, solution conformation, exchange kinetics
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpha S. R., Brady A. H. Optical activity and conformation of the cation carrier X537A. J Am Chem Soc. 1973 Oct 17;95(21):7043–7049. doi: 10.1021/ja00802a027. [DOI] [PubMed] [Google Scholar]
- Cornelius G., Gärtner W., Haynes D. H. Cation complexation by valinomycin- and nigericin-type inophores registered by the fluorescence signal of Tl+. Biochemistry. 1974 Jul 16;13(15):3052–3057. doi: 10.1021/bi00712a009. [DOI] [PubMed] [Google Scholar]
- Deber C. M., Blout E. R. Letter: Amino acid-cyclic peptide complexes. J Am Chem Soc. 1974 Nov 27;96(24):7566–7568. doi: 10.1021/ja00831a037. [DOI] [PubMed] [Google Scholar]
- Degani H., Friedman H. L. Ion binding by X-537A. Formulas, formation constants, and spectra of complexes. Biochemistry. 1974 Nov 19;13(24):5022–5032. doi: 10.1021/bi00721a025. [DOI] [PubMed] [Google Scholar]
- Degani H., Friedman H. L. Ion binding by X-537A. Rates of complexation of Ni2+ and Mn2+ in methanol. Biochemistry. 1975 Aug 26;14(17):3755–3761. doi: 10.1021/bi00688a006. [DOI] [PubMed] [Google Scholar]
- Fernández M. S., Célis H., Montal M. Proton magnetic resonance detection of ionophor mediated transport of praseodymium ions across phospholipid membranes. Biochim Biophys Acta. 1973 Nov 16;323(4):600–605. doi: 10.1016/0005-2736(73)90168-5. [DOI] [PubMed] [Google Scholar]
- Foreman J. C., Mongar J. L., Gomperts B. D. Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process. Nature. 1973 Oct 5;245(5423):249–251. doi: 10.1038/245249a0. [DOI] [PubMed] [Google Scholar]
- Holz R. W. The release of dopamine from synaptosomes from rat striatum by the ionophores X 537A and A 23187. Biochim Biophys Acta. 1975 Jan 14;375(1):138–152. doi: 10.1016/0005-2736(75)90079-6. [DOI] [PubMed] [Google Scholar]
- Johnson S. M., Herrin J., Liu S. J., Paul I. C. The crystal and molecular structure of the barium salt of an antibiotic containing a high proportion of oxygen. J Am Chem Soc. 1970 Jul 15;92(14):4428–4435. doi: 10.1021/ja00717a047. [DOI] [PubMed] [Google Scholar]
- Nordmann J. J., Currell G. A. The mechanism of calcium ionophore-induced secretion from the rat neurohypophysis. Nature. 1975 Feb 20;253(5493):646–647. doi: 10.1038/253646a0. [DOI] [PubMed] [Google Scholar]
- Pasantes-Morales H., Salceda R., Gómez-Puyou A. Effect of X537A on the release of amino acids in retina. Biochem Biophys Res Commun. 1974 Jun 4;58(3):847–853. doi: 10.1016/s0006-291x(74)80494-8. [DOI] [PubMed] [Google Scholar]
- Patel D. J., Shen C. Structural and kinetic studies of lasalocid A (X537A) and its silver, sodium, and barium salts in nonpolar solvents. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1786–1790. doi: 10.1073/pnas.73.6.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
- Shen C., Patel D. J. Free acid, anion, alkali, and alkaline earth complexes of lasalocid a (X537A) in methanol: structural and kinetic studies at the monomer level. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4277–4281. doi: 10.1073/pnas.73.12.4277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westley J. W. A proposed numbering system for polyether antibiotics. J Antibiot (Tokyo) 1976 May;29(5):584–586. doi: 10.7164/antibiotics.29.584. [DOI] [PubMed] [Google Scholar]
