Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Nov;74(11):4757–4761. doi: 10.1073/pnas.74.11.4757

Location of pyridoxal phosphate in glycogen phosphorylase a.

J Sygusch, N B Madsen, P J Kasvinsky, R J Fletterick
PMCID: PMC432034  PMID: 270710

Abstract

The pyridoxal 5'-phosphate cofactor of glycogen phosphorylase a (1,4-alpha-D-glucan:orthophosphate alpha-glucosyltransferase, EC2.4.1.1.) has been positioned on the protomer with x-ray diffraction data, chemical markers, and sequence information. The electron density was computed from 3.0-A resolution phases calculated from four heavy-atom derivatives. The cofactor is buried inside the protomer adjacent to the glucose-binding site. The phosphoryl substrates Pi and glucose-1-P each bind at two sites on the protomer. At low concentrations, Pi and glucose-1-P bind in the same location as does the allosteric effector AMP, near the monomer-monomer interface and some 30 A from the glucose site. At high concentrations glucose-1-P also binds strongly at the glucose site, with its phosphate only 7.2 A from that of the cofactor. Inorganic phosphate can also bind at this site. Implications for the participation of the pyridoxal phosphate in the catalytic mechanism are discussed in the light of these structural findings as well as the wealth of indirect evidence in the literature.

Full text

PDF
4757

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avramovic-Zikic O., Madsen N. B. Paradoxical inhibition of phosphorylase by pyridoxal phosphate. I. Studies on the reaction of pyridoxal phosphate with a specific lysine residue of phosphorylase b. J Biol Chem. 1972 Nov 10;247(21):6999–7004. [PubMed] [Google Scholar]
  2. Avramovic-Zikic O., Welinder K., Shechosky S., Sodek J. Paradoxical inhibition of phosphorylase by pyridoxal phosphate. 3. Sequence of amino acids at site of reaction. Can J Biochem. 1973 Jan;51(1):21–27. doi: 10.1139/o73-004. [DOI] [PubMed] [Google Scholar]
  3. BARANOWSKI T., ILLINGWORTH B., BROWN D. H., CORI C. F. The isolation of pyridoxal-5-phosphate from crystalline muscle phosphorylase. Biochim Biophys Acta. 1957 Jul;25(1):16–21. doi: 10.1016/0006-3002(57)90410-9. [DOI] [PubMed] [Google Scholar]
  4. Engers H. D., Shechosky S., Madsen N. B. Kinetic mechanism of phosphorylase a. I. Initial velocity studies. Can J Biochem. 1970 Jul;48(7):746–754. doi: 10.1139/o70-117. [DOI] [PubMed] [Google Scholar]
  5. Feldmann K., Helmreich E. J. The pyridoxal 5' -phosphate site in rabbit skeletal muscle glycogen phosphorylase b: an ultraviolet and 1H and 31P nuclear magnetic resonance spectroscopic study. Biochemistry. 1976 Jun 1;15(11):2394–2401. doi: 10.1021/bi00656a023. [DOI] [PubMed] [Google Scholar]
  6. Fischer E. H., Krebs E. G. Relationship of structure to function of muscle phosphorylase. Fed Proc. 1966 Sep-Oct;25(5):1511–1520. [PubMed] [Google Scholar]
  7. Fletterick R. J., Sygusch J., Murray N., Madsen N. B. Low-resolution structure of the glycogen phosphorylase alpha monomer and comparison with phosphorylase beta. J Mol Biol. 1976 May 5;103(1):1–13. doi: 10.1016/0022-2836(76)90048-6. [DOI] [PubMed] [Google Scholar]
  8. Fletterick R. J., Sygusch J., Semple H., Madsen N. B. Structure of glycogen phosphorylase a at 3.0 A resolution and its ligand binding sites at 6 A. J Biol Chem. 1976 Oct 10;251(19):6142–6146. [PubMed] [Google Scholar]
  9. Forrey A. W., Sevilla C. L., Saari J. C., Fischer E. H. Sequence of a segment of muscle glycogen phosphorylase containing the pyridoxal 5'-phosphate binding site. Biochemistry. 1971 Aug 3;10(16):3132–3140. doi: 10.1021/bi00792a023. [DOI] [PubMed] [Google Scholar]
  10. Hedrick J. L. An optical rotary dispersion study of glycogen phosphorylase. Arch Biochem Biophys. 1966 Apr;114(1):216–222. doi: 10.1016/0003-9861(66)90323-7. [DOI] [PubMed] [Google Scholar]
  11. Hedrick J. L., Shaltliel S., Fischer E. H. On the role of pyridoxal 5'-phosphate in phosphorylase. 3. Physicochemical properties and reconstitution of apophosphorylase b. Biochemistry. 1966 Jun;5(6):2117–2125. doi: 10.1021/bi00870a045. [DOI] [PubMed] [Google Scholar]
  12. Helmreich E., Michaelides M. C., Cori C. F. Effects of substrates and a substrate analog on the binding of 5'-adenylic acid to muscle phosphorylase a. Biochemistry. 1967 Dec;6(12):3695–3710. doi: 10.1021/bi00864a012. [DOI] [PubMed] [Google Scholar]
  13. Honikel K. O., Madsen N. B. Fluorescence quenching, a tool for probing conformational changes in glycogen phosphorylase. Can J Biochem. 1973 Apr;51(4):344–356. doi: 10.1139/o73-041. [DOI] [PubMed] [Google Scholar]
  14. Johnson G. F., Graves D. J. Circular dichroism and optical rotatory dispersion of glycogen phosphorylase. Biochemistry. 1966 Sep;5(9):2906–2911. doi: 10.1021/bi00873a019. [DOI] [PubMed] [Google Scholar]
  15. Johnson G. F., Tu J. I., Bartlett M. L., Graves D. J. Physical-chemical studies on the pyridoxal phosphate binding site in sodium borohydride-reduced and native phosphorylase. J Biol Chem. 1970 Nov 10;245(21):5560–5568. [PubMed] [Google Scholar]
  16. Kastenschmidt L. L., Kastenschmidt J., Helmreich E. Subunit interactions and their relationship to the allosteric properties of rabbit skeletal muscle phosphorylase b. Biochemistry. 1968 Oct;7(10):3590–3608. doi: 10.1021/bi00850a037. [DOI] [PubMed] [Google Scholar]
  17. Kasvinsky P. J., Madsen N. B. Activity of glycogen phosphorylase in the crystalline state. J Biol Chem. 1976 Nov 10;251(21):6852–6859. [PubMed] [Google Scholar]
  18. Lerch K., Fischer E. H. Amino acid sequence of two functional sites in yeast glycogen phosphorylase. Biochemistry. 1975 May 6;14(9):2009–2014. doi: 10.1021/bi00680a031. [DOI] [PubMed] [Google Scholar]
  19. Li E. C., Fletterick R. J., Sygusch J., Madsen N. B. An essential arginine residue in the active-site pocket of glycogen phosporylase. Can J Biochem. 1977 Apr;55(4):465–473. doi: 10.1139/o77-065. [DOI] [PubMed] [Google Scholar]
  20. Shaltiel S., Cortijo M. The mode of binding of pyridoxal 5'-phosphate in glycogen phosphorylase. Biochem Biophys Res Commun. 1970 Nov 9;41(3):594–600. doi: 10.1016/0006-291x(70)90054-9. [DOI] [PubMed] [Google Scholar]
  21. Shaltiel S., Hedrick J. L., Pocker A., Fischer E. H. Reconstitution of apophosphorylase with pyridoxal 5'-phosphate analogs. Biochemistry. 1969 Dec;8(12):5189–5196. doi: 10.1021/bi00840a073. [DOI] [PubMed] [Google Scholar]
  22. Titani K., Koide A., Hermann J., Ericsson L. H., Kumar S., Wade R. D., Walsh K. A., Neurath H., Fischer E. H. Complete amino acid sequence of rabbit muscle glycogen phosphorylase. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4762–4766. doi: 10.1073/pnas.74.11.4762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vidgoff J. M., Pocker A., Hullar T. L., Fischer E. H. Interaction of muscle glycogen phosphorylase with pyridoxal 5'-methylenephosphonate. Biochem Biophys Res Commun. 1974 Apr 23;57(4):1166–1174. doi: 10.1016/0006-291x(74)90819-5. [DOI] [PubMed] [Google Scholar]
  24. Zarkadas C. G., Smillie L. B., Madsen N. B. Sulphydryl groups of muscle phosphorylase. II. Thiol sequences and subunit structure. J Mol Biol. 1968 Dec 14;38(2):245–247. doi: 10.1016/0022-2836(68)90410-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES