Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Nov;74(11):4821–4825. doi: 10.1073/pnas.74.11.4821

Nonintercalative binding of ethidium bromide to nucleic acids: crystal structure of an ethidium--tRNA molecular complex.

M Liebman, J Rubin, M Sundaralingam
PMCID: PMC432047  PMID: 270714

Abstract

X-ray diffraction studies at 4.5-A resolution on crystals of a complex of ethidium bromide and yeast phenylalanine tRNA reveal a nonintercalative model of binding of the ethidium within the tertiary structure. This is contrary to the expected interacalative binding to the double-helical regions.

Full text

PDF
4821

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bittman R. Studies of the binding of ethidium bromide to transfer ribonucleic acid: absorption, fluorescence, ultracentrifugation and kinetic investigations. J Mol Biol. 1969 Dec 14;46(2):251–268. doi: 10.1016/0022-2836(69)90420-3. [DOI] [PubMed] [Google Scholar]
  2. Bolton P. H., Jones C. R., Bastedo-Lerner D., Wong K. L., Kearns D. R. Quantitative determination of the number of secondary and tertiary structure base pairs in transfer RNA in solution. Biochemistry. 1976 Oct 5;15(20):4370–4377. doi: 10.1021/bi00665a004. [DOI] [PubMed] [Google Scholar]
  3. Geerdes H. A., Hilbers C. W. The iminoproton NMR spectrum of yeast tRNA-Phe predicted from crystal coordinates. Nucleic Acids Res. 1977 Jan;4(1):207–221. doi: 10.1093/nar/4.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Giacomoni P. U., Le Bret M. Electronic structure of ethidium bromide. FEBS Lett. 1973 Feb 1;29(3):227–230. doi: 10.1016/0014-5793(73)80025-0. [DOI] [PubMed] [Google Scholar]
  5. Giessner-Prettre C., Pullman B., Borer P. N., Kan L. S., Ts'o P. O. Ring-current effects in the Nmr of nucleic acids: a graphical approach. Biopolymers. 1976 Nov;15(11):2277–2286. doi: 10.1002/bip.1976.360151114. [DOI] [PubMed] [Google Scholar]
  6. Giessner-Prettre C., Pullman B., Caillet J. Theoretical study on the proton chemical shifts of hydrogen bonded nucleic acid bases. Nucleic Acids Res. 1977 Jan;4(1):99–116. doi: 10.1093/nar/4.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giessner-Prettre C., Pullman B. Intermolecular nuclear shielding values for protons of purines and flavins. J Theor Biol. 1970 Apr;27(1):87–95. doi: 10.1016/0022-5193(70)90130-x. [DOI] [PubMed] [Google Scholar]
  8. Ichikawa T., Sundaralingam M. X-ray diffraction study of a new crystal form of yeast phenylalanine tRNA. Nat New Biol. 1972 Apr 12;236(67):174–175. doi: 10.1038/newbio236174a0. [DOI] [PubMed] [Google Scholar]
  9. Jack A., Ladner J. E., Klug A. Crystallographic refinement of yeast phenylalanine transfer RNA at 2-5A resolution. J Mol Biol. 1976 Dec 25;108(4):619–649. doi: 10.1016/s0022-2836(76)80109-x. [DOI] [PubMed] [Google Scholar]
  10. Jack A., Ladner J. E., Rhodes D., Brown R. S., Klug A. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA. J Mol Biol. 1977 Apr 15;111(3):315–328. doi: 10.1016/s0022-2836(77)80054-5. [DOI] [PubMed] [Google Scholar]
  11. Jones C. R., Kearns D. R. Identification of a unique ethidium bromide binding site on yeast tRNAPhe by high resolution (300 MHz) nuclear magnetic resonance. Biochemistry. 1975 Jun 17;14(12):2660–2665. doi: 10.1021/bi00683a016. [DOI] [PubMed] [Google Scholar]
  12. Jones C. R., Kearns D. R. Letter: Paramagnetic rare earth ion probes of transfer ribonucleic acid structure. J Am Chem Soc. 1974 May 29;96(11):3651–3653. doi: 10.1021/ja00818a051. [DOI] [PubMed] [Google Scholar]
  13. Jones C. R., Kearns D. R. Nuclear magnetic resonance of the base-pairing structure of the native and denatured conformers of Escherichia coli transfer RNATrp. J Mol Biol. 1976 Jun 5;103(4):747–764. doi: 10.1016/0022-2836(76)90207-2. [DOI] [PubMed] [Google Scholar]
  14. Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
  15. LERMAN L. S. Structural considerations in the interaction of DNA and acridines. J Mol Biol. 1961 Feb;3:18–30. doi: 10.1016/s0022-2836(61)80004-1. [DOI] [PubMed] [Google Scholar]
  16. Leroy J. L., Guéron M., Thomas G., Favre A. Role of divalent ions in folding of tRNA. Eur J Biochem. 1977 Apr 15;74(3):567–574. doi: 10.1111/j.1432-1033.1977.tb11426.x. [DOI] [PubMed] [Google Scholar]
  17. Lightfoot D. R., Wong K. L., Kearns D. R., Reid B. R., Shulman R. G. Assignment of the low field proton nuclear magnetic resonance spectrum of yeast phenylalanine transfer RNA to specific base pairs. J Mol Biol. 1973 Jun 25;78(1):71–89. doi: 10.1016/0022-2836(73)90429-4. [DOI] [PubMed] [Google Scholar]
  18. Reid B. R., Ribeiro N. S., Gould G., Robillard G., Hilbers C. W., Shulman R. G. Tertiary hydrogen bonds in the solution structure of transfer RNA. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2049–2053. doi: 10.1073/pnas.72.6.2049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  20. Robillard G. T., Tarr C. E., Vosman F., Berendsen H. J. Similarity of the crystal and solution structure of yeast tRNAPhe. Nature. 1976 Jul 29;262(5567):363–369. doi: 10.1038/262363a0. [DOI] [PubMed] [Google Scholar]
  21. Römer R., Hach R. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves. Eur J Biochem. 1975 Jun 16;55(1):271–284. doi: 10.1111/j.1432-1033.1975.tb02160.x. [DOI] [PubMed] [Google Scholar]
  22. Sakai T. T., Cohen S. S. Effects of polyamines on the structure and reactivity of tRNA. Prog Nucleic Acid Res Mol Biol. 1976;17:15–42. doi: 10.1016/s0079-6603(08)60064-1. [DOI] [PubMed] [Google Scholar]
  23. Stout C. D., Mizuno H., Rubin J., Brennan T., Rao S. T., Sundaralingam M. Atomic coordinates and molecular conformation of yeast phenylalanyl tRNA. An independent investigation. Nucleic Acids Res. 1976 Apr;3(4):1111–1123. doi: 10.1093/nar/3.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Suddath F. L., Quigley G. J., McPherson A., Sneden D., Kim J. J., Kim S. H., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0angstroms resolution. Nature. 1974 Mar 1;248(5443):20–24. doi: 10.1038/248020a0. [DOI] [PubMed] [Google Scholar]
  25. Sundaralingam M., Mizuno H., Stout C. D., Rao S. T., Liedman M., Yathindra N. Mechanisms of chain folding in nucleic acids. The (omega, omega) plot and its correlation to the nucleotide geometry in yeast tRNAPhe1. Nucleic Acids Res. 1976 Oct;3(10):2471–2484. doi: 10.1093/nar/3.10.2471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Urbanke C., Römer R., Maass G. The binding of ethidium bromide to different conformations of tRNA. Unfolding of tertiary structure. Eur J Biochem. 1973 Mar 15;33(3):511–516. doi: 10.1111/j.1432-1033.1973.tb02710.x. [DOI] [PubMed] [Google Scholar]
  27. WOOLFE G. Trypanocidal action of phenanthridine compounds: effect of changing the quaternary groups of known trypanocides. Br J Pharmacol Chemother. 1956 Sep;11(3):330–333. doi: 10.1111/j.1476-5381.1956.tb01076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. WOOLFE G. Trypanocidal action of phenanthridine compounds: further 2:7-diamino phenanthridinium compounds. Br J Pharmacol Chemother. 1956 Sep;11(3):334–338. doi: 10.1111/j.1476-5381.1956.tb01077.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Waring M. J. Complex formation between ethidium bromide and nucleic acids. J Mol Biol. 1965 Aug;13(1):269–282. doi: 10.1016/s0022-2836(65)80096-1. [DOI] [PubMed] [Google Scholar]
  30. Weisblum B., De Haseth P. L. Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylaterich regions in DNA. Proc Natl Acad Sci U S A. 1972 Mar;69(3):629–632. doi: 10.1073/pnas.69.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wells B. D., Cantor C. R. A strong ethidium binding site in the acceptor stem of most or all transfer RNAs. Nucleic Acids Res. 1977;4(5):1667–1680. doi: 10.1093/nar/4.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES