Abstract
We have previously demonstrated the preferential activation of the K-ras gene from the susceptible A/J parent in lung tumors from F1 mouse hybrids. In the present study, the mechanism of this observation is further investigated. Higher levels of expression of A/J K-ras allele were detected in lung adenomas (30 of 30) from the C3A mouse. In addition, three K-ras alleles, designated as susceptible (Ks), intermediate (Ki), or resistant (Kr), were identified by sequence analysis of the second intron of the K-ras gene from 32 strains of mice. These K-ras alleles are associated with differences in mouse lung tumor susceptibility. All Kr alleles have a tandem 37-bp direct repeat (nt 282-355) in the second intron of the K-ras gene. Ks and Ki alleles have only one copy of the 37-bp sequence (nt 282-318). Ks strains have three base variations at nt 288, 296, and 494, and Ki strains have two base variations at nt 288 and 494 in the second intron of the K-ras gene. Differential protein-binding patterns were observed in gel-mobility-shift experiments between the duplicated 37-bp sequence of the Kr allele and the single 37-bp sequence of the Ks and Ki alleles. DNase I footprinting assay revealed protein binding sites in the second intron of the K-ras gene that correspond to the tandem repeat sequences. Our data suggest that higher expression of the A/J allele relative to C3H allele may be responsible for the allele-specific activation of the K-ras gene in lung tumors from F1 hybrid mice.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alroy I., Freedman L. P. DNA binding analysis of glucocorticoid receptor specificity mutants. Nucleic Acids Res. 1992 Mar 11;20(5):1045–1052. doi: 10.1093/nar/20.5.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLOOM J. L., FALCONER D. S. A GENE WITH MAJOR EFFECT ON SUSCEPTIBILITY TO INDUCED LUNG TUMORS IN MICE. J Natl Cancer Inst. 1964 Oct;33:607–618. [PubMed] [Google Scholar]
- Belinsky S. A., Devereux T. R., Maronpot R. R., Stoner G. D., Anderson M. W. Relationship between the formation of promutagenic adducts and the activation of the K-ras protooncogene in lung tumors from A/J mice treated with nitrosamines. Cancer Res. 1989 Oct 1;49(19):5305–5311. [PubMed] [Google Scholar]
- Buchmann A., Ruggeri B., Klein-Szanto A. J., Balmain A. Progression of squamous carcinoma cells to spindle carcinomas of mouse skin is associated with an imbalance of H-ras alleles on chromosome 7. Cancer Res. 1991 Aug 1;51(15):4097–4101. [PubMed] [Google Scholar]
- Chen B., Liu L., Castonguay A., Maronpot R. R., Anderson M. W., You M. Dose-dependent ras mutation spectra in N-nitrosodiethylamine induced mouse liver tumors and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induced mouse lung tumors. Carcinogenesis. 1993 Aug;14(8):1603–1608. doi: 10.1093/carcin/14.8.1603. [DOI] [PubMed] [Google Scholar]
- Devereux T. R., Anderson M. W., Belinsky S. A. Role of ras protooncogene activation in the formation of spontaneous and nitrosamine-induced lung tumors in the resistant C3H mouse. Carcinogenesis. 1991 Feb;12(2):299–303. doi: 10.1093/carcin/12.2.299. [DOI] [PubMed] [Google Scholar]
- Diwan B. A., Meier H. Strain- and age-dependent transplacental carcinogenesis by 1-ethyl-1-nitrosourea in inbred strains of mice. Cancer Res. 1974 Apr;34(4):764–770. [PubMed] [Google Scholar]
- Dynan W. S., Tjian R. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell. 1983 Nov;35(1):79–87. doi: 10.1016/0092-8674(83)90210-6. [DOI] [PubMed] [Google Scholar]
- Finney R. E., Bishop J. M. Predisposition to neoplastic transformation caused by gene replacement of H-ras1. Science. 1993 Jun 4;260(5113):1524–1527. doi: 10.1126/science.8502998. [DOI] [PubMed] [Google Scholar]
- Friedman E. Y., Rosbash M. The syntheiss of high yields of full-length reverse transcripts of globin mRNA. Nucleic Acids Res. 1977 Oct;4(10):3455–3471. doi: 10.1093/nar/4.10.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gariboldi M., Manenti G., Canzian F., Falvella F. S., Radice M. T., Pierotti M. A., Della Porta G., Binelli G., Dragani T. A. A major susceptibility locus to murine lung carcinogenesis maps on chromosome 6. Nat Genet. 1993 Feb;3(2):132–136. doi: 10.1038/ng0293-132. [DOI] [PubMed] [Google Scholar]
- Hoffman E. K., Trusko S. P., Murphy M., George D. L. An S1 nuclease-sensitive homopurine/homopyrimidine domain in the c-Ki-ras promoter interacts with a nuclear factor. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2705–2709. doi: 10.1073/pnas.87.7.2705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malkinson A. M., Nesbitt M. N., Skamene E. Susceptibility to urethan-induced pulmonary adenomas between A/J and C57BL/6J mice: use of AXB and BXA recombinant inbred lines indicating a three-locus genetic model. J Natl Cancer Inst. 1985 Nov;75(5):971–974. doi: 10.1093/jnci/75.5.971. [DOI] [PubMed] [Google Scholar]
- Malkinson A. M. The genetic basis of susceptibility to lung tumors in mice. Toxicology. 1989 Mar;54(3):241–271. doi: 10.1016/0300-483x(89)90062-0. [DOI] [PubMed] [Google Scholar]
- Maronpot R. R., Shimkin M. B., Witschi H. P., Smith L. H., Cline J. M. Strain A mouse pulmonary tumor test results for chemicals previously tested in the National Cancer Institute carcinogenicity tests. J Natl Cancer Inst. 1986 Jun;76(6):1101–1112. [PubMed] [Google Scholar]
- McKay I. A., Paterson H., Brown R., Toksoz D., Marshall C. J., Hall A. N-ras and human cancer. Anticancer Res. 1986 May-Jun;6(3 Pt B):483–490. [PubMed] [Google Scholar]
- Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryan J., Barker P. E., Nesbitt M. N., Ruddle F. H. KRAS2 as a genetic marker for lung tumor susceptibility in inbred mice. J Natl Cancer Inst. 1987 Dec;79(6):1351–1357. [PubMed] [Google Scholar]
- Ryan J., Barker P. E., Ruddle F. H. An EcoRI restriction fragment length polymorphism at the KRAS2 locus on mouse chromosome 6. Nucleic Acids Res. 1986 Nov 25;14(22):9222–9222. doi: 10.1093/nar/14.22.9222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimkin M. B., Stoner G. D. Lung tumors in mice: application to carcinogenesis bioassay. Adv Cancer Res. 1975;21:1–58. doi: 10.1016/s0065-230x(08)60970-7. [DOI] [PubMed] [Google Scholar]
- Thaete L. G., Gunning W. T., Stoner G. D., Malkinson A. M. Cellular derivation of lung tumors in sensitive and resistant strains of mice: results at 28 and 56 weeks after urethan treatment. J Natl Cancer Inst. 1987 Apr;78(4):743–749. [PubMed] [Google Scholar]
- Ullrich A., Shine J., Chirgwin J., Pictet R., Tischer E., Rutter W. J., Goodman H. M. Rat insulin genes: construction of plasmids containing the coding sequences. Science. 1977 Jun 17;196(4296):1313–1319. doi: 10.1126/science.325648. [DOI] [PubMed] [Google Scholar]
- Yang Q., Kadam A., Trempe J. P. Mutational analysis of the adeno-associated virus rep gene. J Virol. 1992 Oct;66(10):6058–6069. doi: 10.1128/jvi.66.10.6058-6069.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- You M., Candrian U., Maronpot R. R., Stoner G. D., Anderson M. W. Activation of the Ki-ras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc Natl Acad Sci U S A. 1989 May;86(9):3070–3074. doi: 10.1073/pnas.86.9.3070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- You M., Wang Y., Stoner G., You L., Maronpot R., Reynolds S. H., Anderson M. Parental bias of Ki-ras oncogenes detected in lung tumors from mouse hybrids. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5804–5808. doi: 10.1073/pnas.89.13.5804. [DOI] [PMC free article] [PubMed] [Google Scholar]