Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Nov;74(11):5056–5059. doi: 10.1073/pnas.74.11.5056

Selective loss of wheat germ agglutinin binding to agglutinin-resistant mutants of Chinese hamster ovary cells.

P Stanley, J P Carver
PMCID: PMC432097  PMID: 270740

Abstract

The binding of 125I-labeled wheat germ agglutinin (WGA) to parental and three distinct WGA-resistant Chinese hamster ovary cell lines possessing modified cell surface carbohydrate structures has been examined over a 10(6)-fold range of WGA concentrations. The Scatchard plot for WGA binding to parental cells was complex and exhibited positively cooperative binding at the high affinity sites. One of the WGA-resistant mutants (WgaRIII) was apparently not altered in its WGA-binding ability compared with parental cells. However, two of the WGA-resistant lines (WgaRI and WgaRII) had distinct alterations in their WGA-binding properties specific to certain regions of the binding curve. Neither appeared to be affected in either the highest or lowest affinity regions of the binding curve. Thus, lectin-resistant cell mutants altered in specific lectin-binding sites at the cell surface provide a direct approach to analysis of the complex binding parameters that characterize the interaction of WGA with the plasma membrane.

Full text

PDF
5056

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bornens M., Karsenti E., Avrameas S. Cooperative binding of concanavalin A to thymocytes at 4 degrees C and micro-redistribution of concanavalin A receptors. Eur J Biochem. 1976 May 17;65(1):61–69. doi: 10.1111/j.1432-1033.1976.tb10389.x. [DOI] [PubMed] [Google Scholar]
  2. Briles E. B., Li E., Kornfeld S. Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose. J Biol Chem. 1977 Feb 10;252(3):1107–1116. [PubMed] [Google Scholar]
  3. Cuatrecasas P. Interaction of wheat germ agglutinin and concanavalin A with isolated fat cells. Biochemistry. 1973 Mar 27;12(7):1312–1323. doi: 10.1021/bi00731a011. [DOI] [PubMed] [Google Scholar]
  4. DeMeyts P., Bainco A. R., Roth J. Site-site interactions among insulin receptors. Characterization of the negative cooperativity. J Biol Chem. 1976 Apr 10;251(7):1877–1888. [PubMed] [Google Scholar]
  5. Greene W. C., Parker C. M., Parker C. W. Opposing effects of mitogenic and nonmitogenic lectins on lymphocyte activation. Evidence that wheat germ agglutinin produces a negative signal. J Biol Chem. 1976 Jul 10;251(13):4017–4025. [PubMed] [Google Scholar]
  6. Juliano R. L., Stanley P. Altered cell surface glycoproteins in phytohemagglutinin-resistant mutants of Chinese hamster ovary cells. Biochim Biophys Acta. 1975 May 6;389(2):401–406. doi: 10.1016/0005-2736(75)90332-6. [DOI] [PubMed] [Google Scholar]
  7. Nagata Y., Burger M. M. Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem. 1974 May 25;249(10):3116–3122. [PubMed] [Google Scholar]
  8. Narasimhan S., Stanley P., Schachter H. Control of glycoprotein synthesis. Lectin-resistant mutant containing only one of two distinct N-acetylglucosaminyltransferase activities present in wild type Chinese hamster ovary cells. J Biol Chem. 1977 Jun 10;252(11):3926–3933. [PubMed] [Google Scholar]
  9. Nichol L. W., Winzor D. J. Ligand-induced polymerization. Biochemistry. 1976 Jul 13;15(14):3015–3019. doi: 10.1021/bi00659a012. [DOI] [PubMed] [Google Scholar]
  10. Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
  11. Reisner Y., Lis H., Sharon N. On the importance of the binding of lectins to cell surface receptors at low lectin concentrations. Exp Cell Res. 1976 Feb;97(2):445–448. doi: 10.1016/0014-4827(76)90640-6. [DOI] [PubMed] [Google Scholar]
  12. Schmidt-Ullrich R., Wallach D. F., Hendricks J. Interaction of concanavalin A with rabbit thymocyte plasma membranes. Distinction between low affinity assoication and positively cooperative binding mediated by a specific glycoprotein. Biochim Biophys Acta. 1976 Sep 7;443(3):587–600. doi: 10.1016/0005-2736(76)90475-2. [DOI] [PubMed] [Google Scholar]
  13. Spiro R. G. Glycoproteins. Adv Protein Chem. 1973;27:349–467. doi: 10.1016/s0065-3233(08)60451-9. [DOI] [PubMed] [Google Scholar]
  14. Stanley P., Caillibot V., Siminovitch L. Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cell. Cell. 1975 Oct;6(2):121–128. doi: 10.1016/0092-8674(75)90002-1. [DOI] [PubMed] [Google Scholar]
  15. Stanley P., Narasimhan S., Siminovitch L., Schachter H. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine--glycoprotein N-acetylglucosaminyltransferase activity. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3323–3327. doi: 10.1073/pnas.72.9.3323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stanley P., Siminovitch L. Complementation between mutants of CHO cells resistant to a variety of plant lectins. Somatic Cell Genet. 1977 Jul;3(4):391–405. doi: 10.1007/BF01542968. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES