Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Nov;74(11):5113–5117. doi: 10.1073/pnas.74.11.5113

Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures

B G Gengenbach 1, C E Green 1, C M Donovan 1
PMCID: PMC432110  PMID: 16592467

Abstract

Texas male-sterile cytoplasm (cms-T) maize is susceptible to Helminthosporium maydis race T and its pathotoxin, whereas nonsterile cytoplasm maize is resistant. Callus cultures initiated from immature embryos of a cms-T genotype, BC1A188(T), were susceptible to the toxin and were capable of plant regeneration. Toxin-resistant cell lines were selected by a sublethal enrichment procedure in which cms-T callus was grown for several selection cycles (subculture transfers) in the presence of progressively higher concentrations of toxin. Periodically during the selection process, plants were regenerated from the cms-T cultures to determine their susceptibility or resistance to the toxin. Plants regenerated after four cycles of selection were male-sterile and toxin-susceptible as shown by leaf bioassays. All plants regenerated from cell lines isolated from the fifth selection cycle onward, however, were toxin-resistant and 52 of 65 were fully male-fertile. The remaining 13 “male-sterile” resistant plants did not shed pollen and did not resemble cms-T plants in tassel morphology. Some “male-sterile” plants produced anthers containing a small amount of starch-filled pollen, suggesting that the sterility of these 13 plants was not the result of the cms-T trait. Leaf bioassays on F1 progeny from regenerated resistant plants indicated that resistance to the toxin was inherited only through the female. The male-fertility trait also was inherited only through the female. After inoculation with H. maydis race T spores, leaf lesion size for progeny from regenerated resistant plants coincided with their reaction to the toxin. This result indicated that plant resistance to the pathogen was closely correlated with the toxin resistance obtained through cell culture selection.

Keywords: cell culture selection, plant regeneration, disease resistance, Helminthosporium maydis race T, cytoplasmic inheritance

Full text

PDF
5113

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlson P. S. Methionine sulfoximine--resistant mutants of tobacco. Science. 1973 Jun 29;180(4093):1366–1368. doi: 10.1126/science.180.4093.1366. [DOI] [PubMed] [Google Scholar]
  2. Chaleff R. S., Carlson P. S. Somatic cell genetics of higher plants. Annu Rev Genet. 1974;8:267–278. doi: 10.1146/annurev.ge.08.120174.001411. [DOI] [PubMed] [Google Scholar]
  3. Levings C. S., 3rd, Pring D. R. Restriction endonuclease analysis of mitochondrial DNA from normal and Texas cytoplasmic male-sterile maize. Science. 1976 Jul 9;193(4248):158–160. doi: 10.1126/science.193.4248.158. [DOI] [PubMed] [Google Scholar]
  4. Maliga P., Sz-Breznovits A., Marton L Joo F. Non-Mendelian streptomycin-resistant tobacco mutant with altered chlorplasts and mitochondria. Nature. 1975 May 29;255(5507):401–402. doi: 10.1038/255401a0. [DOI] [PubMed] [Google Scholar]
  5. Maliga P., Sz-Breznovits A., Márton L. Streptomycin-resistant plants from callus culture of haploid tobacco. Nat New Biol. 1973 Jul 4;244(131):29–30. doi: 10.1038/newbio244029a0. [DOI] [PubMed] [Google Scholar]
  6. Miller R. J., Dumford S. W., Koeppe D. E., Hanson J. B. Divalent cation stimulation of substrate oxidation by corn mitochondria. Plant Physiol. 1970 Jun;45(6):649–653. doi: 10.1104/pp.45.6.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Miller R. J., Koeppe D. E. Southern corn leaf blight: susceptible and resistant mitochondria. Science. 1971 Jul 2;173(3991):67–69. doi: 10.1126/science.173.3991.67. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES