Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Nov;74(11):5176–5178. doi: 10.1073/pnas.74.11.5176

How to label nerve cells so that they can interconnect in an ordered fashion.

C von der Malsburg, D J Willshaw
PMCID: PMC432124  PMID: 270757

Abstract

We present a method for setting up topographically ordered mappings between two sheets of nerve cells. A set of chemical markers that express the neighborhood relationships within the presynaptic sheet is induced by the fibers into the postsynaptic sheet. The markers are used to guide the fibers to their terminal sites. A case for which this idea may be relevant is the retinotectal projection; our model exhibits types of plasticity found experimentally. The fact that the postsynaptic markers remain after removal of the projecting fibers suggests an important difference between development and regeneration. This paper concentrates on explaining the basic idea, and in addition presents a set of preliminary computer simulations.

Full text

PDF
5176

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. GAZE R. M., JACOBSON M., SZEKELY C. The retino-tectal projection in Xenopus with compound eyes. J Physiol. 1963 Mar;165:484–499. doi: 10.1113/jphysiol.1963.sp007072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gaze R. M., Keating M. J., Chung S. H. The evolution of the retinotectal map during development in Xenopus. Proc R Soc Lond B Biol Sci. 1974 Feb 12;185(1080):301–330. doi: 10.1098/rspb.1974.0021. [DOI] [PubMed] [Google Scholar]
  3. Gaze R. M., Keating M. J. The visual system and "neuronal specificity". Nature. 1972 Jun 16;237(5355):375–378. doi: 10.1038/237375a0. [DOI] [PubMed] [Google Scholar]
  4. Hope R. A., Hammond B. J., Gaze R. M. The arrow model: retinotectal specificity and map formation in the goldfish visual system. Proc R Soc Lond B Biol Sci. 1976 Nov 12;194(1117):447–466. doi: 10.1098/rspb.1976.0088. [DOI] [PubMed] [Google Scholar]
  5. Hunt R. K., Jacobson M. Development of neuronal locus specificity in Xenopus retinal ganglion cells after surgical eye transection after fusion of whole eyes. Dev Biol. 1974 Sep;40(1):1–15. doi: 10.1016/0012-1606(74)90102-x. [DOI] [PubMed] [Google Scholar]
  6. Hunt R. K., Jacobson M. Neuronal locus specificity: altered pattern of spatial deployment in fused fragments of embryonic xenopus eyes. Science. 1973 May 4;180(4085):509–511. doi: 10.1126/science.180.4085.509. [DOI] [PubMed] [Google Scholar]
  7. Jacobson M., Levine R. L. Plasticity in the adult frog brain: filling the visual scotoma after excision or translocation of parts of the optic tectum. Brain Res. 1975 May 2;88(2):339–345. doi: 10.1016/0006-8993(75)90396-0. [DOI] [PubMed] [Google Scholar]
  8. Levine R., Jacobson M. Deployment of optic nerve fibers is determined by positional markers in the frog's tectum. Exp Neurol. 1974 Jun;43(3):527–538. doi: 10.1016/0014-4886(74)90192-7. [DOI] [PubMed] [Google Scholar]
  9. Meinhardt H., Gierer A. Applications of a theory of biological pattern formation based on lateral inhibition. J Cell Sci. 1974 Jul;15(2):321–346. doi: 10.1242/jcs.15.2.321. [DOI] [PubMed] [Google Scholar]
  10. Prestige M. C., Willshaw D. J. On a role for competition in the formation of patterned neural connexions. Proc R Soc Lond B Biol Sci. 1975 Jun 20;190(1098):77–98. doi: 10.1098/rspb.1975.0080. [DOI] [PubMed] [Google Scholar]
  11. Schneider G. E. Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections. Brain Behav Evol. 1973;8(1):73–109. doi: 10.1159/000124348. [DOI] [PubMed] [Google Scholar]
  12. Sharma S. C., Gaze R. M. The retinotopic organization of visual responses from tectal reimplants in adult goldfish. Arch Ital Biol. 1971 Dec;109(4):357–366. [PubMed] [Google Scholar]
  13. Willshaw D. J., von der Malsburg C. How patterned neural connections can be set up by self-organization. Proc R Soc Lond B Biol Sci. 1976 Nov 12;194(1117):431–445. doi: 10.1098/rspb.1976.0087. [DOI] [PubMed] [Google Scholar]
  14. Yoon M. Reorganization of retinotectal projection following surgical operations on the optic tectum in goldfish. Exp Neurol. 1971 Nov;33(2):395–411. doi: 10.1016/0014-4886(71)90031-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES