Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Jun;74(6):2241–2245. doi: 10.1073/pnas.74.6.2241

Uncouplers and the molecular mechanism of uncoupling in mitochondria.

R J Kessler, H Vande Zande, C A Tyson, G A Blondin, J Fairfield, P Glasser, D E Green
PMCID: PMC432145  PMID: 142250

Abstract

Uncouplers are molecules with protonophoric and ionophoric capabilities that mediate coupled cyclical transport of cations--a transport that takes precedence over all other coupled processes. Uncouplers form cation-containing complexes with electrogenic ionophores that potentiate cyclical transport of cations. The molecular mechanism of uncoupling sheds strong light on the mechanism of coupling.

Full text

PDF
2241

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amons R., van den Bergh S. G., Slater E. C. The effect of monovalent cations on the dinitrophenol-induced ATPase of rat-liver mitochondria. Biochim Biophys Acta. 1968 Oct 1;162(3):452–454. doi: 10.1016/0005-2728(68)90131-x. [DOI] [PubMed] [Google Scholar]
  2. Blondin G. A., DeCastro A. F., Senior A. E. The isolation and properties of a peptide ionophore from beef heart mitochondria. Biochem Biophys Res Commun. 1971 Apr 2;43(1):28–35. doi: 10.1016/s0006-291x(71)80080-3. [DOI] [PubMed] [Google Scholar]
  3. Hunter D. R., Capaldi R. A. Respiratory control in cytochrome oxidase. Biochem Biophys Res Commun. 1974 Feb 4;56(3):623–628. doi: 10.1016/0006-291x(74)90650-0. [DOI] [PubMed] [Google Scholar]
  4. Hunter D. R., Haworth R. A., Southard J. H. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem. 1976 Aug 25;251(16):5069–5077. [PubMed] [Google Scholar]
  5. Kessler R. J., Tyson C. A., Green D. E. Mechanism of uncoupling in mitochondria: uncouplers as ionophores for cycling cations and protons. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3141–3145. doi: 10.1073/pnas.73.9.3141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Komai H., Hunter D. R., Southard J. H., Haworth R. A., Green D. E. Energy coupling in lysolecithin-treated submitochondrial particles. Biochem Biophys Res Commun. 1976 Apr 5;69(3):695–704. doi: 10.1016/0006-291x(76)90931-1. [DOI] [PubMed] [Google Scholar]
  7. LARDY H. A., WELLMAN H. The catalytic effect of 2,4-dinitrophenol on adenosinetriphosphate hydrolysis by cell particles and soluble enzymes. J Biol Chem. 1953 Mar;201(1):357–370. [PubMed] [Google Scholar]
  8. Liberman E. A., Topaly V. P., Tsofina L. M., Jasaitis A. A., Skulachev V. P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 1969 Jun 14;222(5198):1076–1078. doi: 10.1038/2221076a0. [DOI] [PubMed] [Google Scholar]
  9. MacLennan D. H., Smoly J. M., Tzagoloff A. Studies on the mitochondrial adenosine triphosphatase system. I. Restoration of adenosine triphosphate-dependent reactions in salt-extracted submitochondrial particles. J Biol Chem. 1968 Apr 10;243(7):1589–1597. [PubMed] [Google Scholar]
  10. Moyle J., Mitchell P. Electric charge stoicheiometry of calcium translocation in rat liver mitochondria. FEBS Lett. 1977 Feb 1;73(2):131–136. doi: 10.1016/0014-5793(77)80964-2. [DOI] [PubMed] [Google Scholar]
  11. Parker V. H. Uncouplers of rat-liver mitochondrial oxidative phosphorylation. Biochem J. 1965 Dec;97(3):658–662. doi: 10.1042/bj0970658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pressman B. C., Harris E. J., Jagger W. S., Johnson J. H. Antibiotic-mediated transport of alkali ions across lipid barriers. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1949–1956. doi: 10.1073/pnas.58.5.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pressman B. C. Induced active transport of ions in mitochondria. Proc Natl Acad Sci U S A. 1965 May;53(5):1076–1083. doi: 10.1073/pnas.53.5.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. ROSSI C. S., LEHNINGER A. L. Stoichiometric relationships between mitochondrialion accumulation and oxidative phosphorylation. Biochem Biophys Res Commun. 1963 Jun 20;11:441–446. doi: 10.1016/0006-291x(63)90089-5. [DOI] [PubMed] [Google Scholar]
  15. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  16. Sadler M. H., Hunter D. R., Haworth R. A. Isolation of an ATP-Pi exchangease from lysolecithin-treated electron transport particles. Biochem Biophys Res Commun. 1974 Jul 24;59(2):804–812. doi: 10.1016/s0006-291x(74)80051-3. [DOI] [PubMed] [Google Scholar]
  17. Skulachev V. P., Sharaf A. A., Liberman E. A. Proton conductors in the respiratory chain and artificial membranes. Nature. 1967 Nov 18;216(5116):718–719. doi: 10.1038/216718a0. [DOI] [PubMed] [Google Scholar]
  18. Southard J. H., Green D. E. Control of the energy coupling modes in mitochondria by mercurials. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1310–1316. doi: 10.1016/s0006-291x(74)80427-4. [DOI] [PubMed] [Google Scholar]
  19. Southard J. H., Penniston J. T., Green D. E. Induction of transmembrane proton transfer by mercurials in mitochondria. I. Ion movements accompanying transmembrane proton transfer. J Biol Chem. 1973 May 25;248(10):3546–3550. [PubMed] [Google Scholar]
  20. Steinrauf L. K., Pinkerton M., Chamberlin J. W. The structure of nigericin. Biochem Biophys Res Commun. 1968 Oct 10;33(1):29–31. doi: 10.1016/0006-291x(68)90249-0. [DOI] [PubMed] [Google Scholar]
  21. Terada H., VAN Dam K. On the stoichiometry between uncouplers of oxidative phosphorylation and respiratory chains. The catalytic action of SF 6847 (3,5-di-tert-butyl-4-hydroxy-benzylidenemalononitrile). Biochim Biophys Acta. 1975 Jun 17;387(3):507–518. doi: 10.1016/0005-2728(75)90089-4. [DOI] [PubMed] [Google Scholar]
  22. Ting H. P., Wilson D. F., Chance B. Effects of uncouplers of oxidative phosphorylation on the specific conductance of bimolecular lipid membranes. Arch Biochem Biophys. 1970 Nov;141(1):141–146. doi: 10.1016/0003-9861(70)90116-5. [DOI] [PubMed] [Google Scholar]
  23. Tyson C. A., Vande Zande H., Green D. E. Phospholipids as ionophores. J Biol Chem. 1976 Mar 10;251(5):1326–1332. [PubMed] [Google Scholar]
  24. Wehrle J. P., Jurkowitz M., Scott K. M., Brierley G. P. Mg2+ and the permeability of heart mitochondria to monovalent cations. Arch Biochem Biophys. 1976 May;174(1):313–323. doi: 10.1016/0003-9861(76)90350-7. [DOI] [PubMed] [Google Scholar]
  25. Young J. H., Blondin G. A., Vanderkooi G., Green D. E. Conformational model of active transport. Proc Natl Acad Sci U S A. 1970 Oct;67(2):550–559. doi: 10.1073/pnas.67.2.550. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES