Abstract
The location, number, and kinds of oligosaccharides in human IgA1 and IgA2 immunoglobulins have been determined by amino acid sequence analysis of the alpha heavy chains. Both A2m allotypes of the alpha2 chain of IgA2 have two GlcN oligosaccharides that are absent in the alpha1 chain, but they lack GalN. The A2m(2) allotype has a fifth GlcN oligosaccharide. The alpha chains of IgA proteins also have subclass-specific and allotype-specific differences in amino acid sequence. Although other classes of human immunoglobulins differ in the number and kind of oligosaccharides, the sites are often homologous and are related to the immunoglobulin domain structure. Evolutionary preservation of the tripeptide acceptor sequence for GlcN probably indicates both a structural and biological role for carbohydrate.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baenziger J., Kornfeld S. Structure of the carbohydrate units of IgA1 immunoglobulin. I. Composition, glycopeptide isolation, and structure of the asparagine-linked oligosaccharide units. J Biol Chem. 1974 Nov 25;249(22):7260–7269. [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
- Deisenhofer J., Colman P. M., Epp O., Huber R. Crystallographic structural studies of a human Fc fragment. II. A complete model based on a Fourier map at 3.5 A resolution. Hoppe Seylers Z Physiol Chem. 1976 Dec;357(10):1421–1434. doi: 10.1515/bchm2.1976.357.2.1421. [DOI] [PubMed] [Google Scholar]
- Despont J. P., Abel C. A. Glycopeptides of heavy chains from human IgA myeloma proteins. J Immunol. 1974 May;112(5):1623–1627. [PubMed] [Google Scholar]
- Edelman G. M., Cunningham B. A., Gall W. E., Gottlieb P. D., Rutishauser U., Waxdal M. J. The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci U S A. 1969 May;63(1):78–85. doi: 10.1073/pnas.63.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fougereau M., Bourgois A., de Preval C., Rocca-Serra J., Schiff C. The complete sequence of the murine monoclonal immunoglobulin MOPC 173 (IgG2a): genetic implications. Ann Immunol (Paris) 1976 Sep-Oct;127(5):607–631. [PubMed] [Google Scholar]
- GRAY W. R., HARTLEY B. S. THE STRUCTURE OF A CHYMOTRYPTIC PEPTIDE FROM PSEUDOMONAS CYTOCHROME C-551. Biochem J. 1963 Nov;89:379–380. doi: 10.1042/bj0890379. [DOI] [PubMed] [Google Scholar]
- Hill R. L., Delaney R., Fellows R. E., Lebovitz H. E. The evolutionary origins of the immunoglobulins. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1762–1769. doi: 10.1073/pnas.56.6.1762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houmard J., Drapeau G. R. Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3506–3509. doi: 10.1073/pnas.69.12.3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inagami T., Murakami K. Identification of phenylthiohydantoins of amino acids by thin-layer chromatography on a plastic-backed silica-gel plate. Anal Biochem. 1972 Jun;47(2):501–504. doi: 10.1016/0003-2697(72)90144-3. [DOI] [PubMed] [Google Scholar]
- Liu T. Y., Chang Y. H. Hydrolysis of proteins with p-toluenesulfonic acid. Determination of tryptophan. J Biol Chem. 1971 May 10;246(9):2842–2848. [PubMed] [Google Scholar]
- Liu Y. S., Low T. L., Infante A., Putnam F. W. Complete covalent structure of a human IgA1 immunoglobulin. Science. 1976 Sep 10;193(4257):1017–1020. doi: 10.1126/science.821146. [DOI] [PubMed] [Google Scholar]
- Low T. L., Liu Y. S., Putnam F. W. Structure, function, and evolutionary relationships of Fc domains of human immunoglobulins A, G, M, and E. Science. 1976 Jan 30;191(4225):390–392. doi: 10.1126/science.1246619. [DOI] [PubMed] [Google Scholar]
- Marshall R. D. Glycoproteins. Annu Rev Biochem. 1972;41:673–702. doi: 10.1146/annurev.bi.41.070172.003325. [DOI] [PubMed] [Google Scholar]
- Mendez E., Lai C. Y. Regeneration of amino acids from thiazolinones formed in the Edman degradation. Anal Biochem. 1975 Sep;68(1):47–53. doi: 10.1016/0003-2697(75)90677-6. [DOI] [PubMed] [Google Scholar]
- Moore V., Putnam F. W. Disulfide bridge peptides and glycopeptides of a human IgAl myeloma globulin. Biochemistry. 1973 Jun 5;12(12):2361–2370. doi: 10.1021/bi00736a027. [DOI] [PubMed] [Google Scholar]
- Pisano J. J., Bronzert T. J., Brewer H. B., Jr Advances in the gas chromatographic analysis of amino acid phenyl- and methylthiohydantoins. Anal Biochem. 1972 Jan;45(1):43–59. doi: 10.1016/0003-2697(72)90006-1. [DOI] [PubMed] [Google Scholar]
- Putnam F. W., Florent G., Paul C., Shinoda T., Shimizu A. Complete amino acid sequence of the Mu heavy chain of a human IgM immunoglobulin. Science. 1973 Oct 19;182(4109):287–291. doi: 10.1126/science.182.4109.287. [DOI] [PubMed] [Google Scholar]
- Putnam F. W., Low T., Liu V., Huser H., Raff E., Wong F. C., Clamp J. R. Isolation, properties, and structure of human IgA myeloma globulins. Adv Exp Med Biol. 1974;45(0):177–189. doi: 10.1007/978-1-4613-4550-3_20. [DOI] [PubMed] [Google Scholar]
- Shimizu A., Putnam F. W., Paul C., Clamp J. R., Johnson I. Structure and role of the five glycopeptides of human IgM immunoglobulins. Nat New Biol. 1971 May 19;231(20):73–76. doi: 10.1038/newbio231073a0. [DOI] [PubMed] [Google Scholar]
- Tracey D. E., Cebra J. J. Primary structure of the CH2 homology region from guinea pig IgG2 antibodies. Biochemistry. 1974 Nov 5;13(23):4796–4803. doi: 10.1021/bi00720a018. [DOI] [PubMed] [Google Scholar]
- Van Loghem E., De Lange G., Koistinen J. The first isoallotype of human IgA proteins. An antigenic determinant occurring as allotype in the IgA2 subclass and as isotype in the IgA1 subclass. Scand J Immunol. 1976;5(1-2):161–164. doi: 10.1111/j.1365-3083.1976.tb03003.x. [DOI] [PubMed] [Google Scholar]