Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Jun;74(6):2456–2460. doi: 10.1073/pnas.74.6.2456

Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs.

V D Vacquier, G W Moy
PMCID: PMC432191  PMID: 267939

Abstract

The insoluble granular material of the acrosome vesicle of sea urchin sperm has been isolated and shown to be a single 30,500 dalton protein for which the name "bindin" is proposed. The data presented are consistent with the hypothesis that bindin is the adhesive responsible for the attachment of sperm to the vitelline layer of the egg. Experimental results suggest that bindin may act by binding to carbohydrate receptors of vitelline layer glycoproteins. The speculation is made that sperm bindins may be the general mechanism by which animal sperm attach to eggs.

Full text

PDF
2456

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aketa K., Onitake K., Tsuzuki H. Tryptic disruption of sperm-binding site of sea urchin egg surface. Exp Cell Res. 1972 Mar;71(1):27–32. doi: 10.1016/0014-4827(72)90258-3. [DOI] [PubMed] [Google Scholar]
  2. Bowles D. J., Kauss H. Isolation of a lectin from liver plasma membrane and its binding to cellular membrane receptors in vitro. FEBS Lett. 1976 Jul 1;66(1):16–19. doi: 10.1016/0014-5793(76)80574-1. [DOI] [PubMed] [Google Scholar]
  3. Brown G. G. Scanning electron-microscopical and other observations of sperm fertilization reactions in Limulus polyphemus L. (Merostomata: Xiphosura). J Cell Sci. 1976 Dec;22(3):547–562. doi: 10.1242/jcs.22.3.547. [DOI] [PubMed] [Google Scholar]
  4. Collins F. A reevaluation of the fertilizin hypothesis of sperm agglutination and the description of a novel form of sperm adhesion. Dev Biol. 1976 Apr;49(2):381–394. doi: 10.1016/0012-1606(76)90182-2. [DOI] [PubMed] [Google Scholar]
  5. Crandall M. A., Brock T. D. Molecular basis of mating in the yeast hansenula wingei. Bacteriol Rev. 1968 Sep;32(3):139–163. doi: 10.1128/br.32.3.139-163.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAN J., OHORI Y., KUSHIDA H. STUDIES ON THE ACROSOME. VII. FORMATION OF THE ACROSOMAL PROCESS IN SEA URCHIN SPERMATOZOA. J Ultrastruct Res. 1964 Dec;11:508–524. doi: 10.1016/s0022-5320(64)80079-4. [DOI] [PubMed] [Google Scholar]
  7. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  8. Grey R. D., Working P. K., Hedrick J. L. Evidence that the fertilization envelope blocks sperm entry in eggs of Xenopus laevis: interaction of sperm with isolated envelopes. Dev Biol. 1976 Nov;54(1):52–60. doi: 10.1016/0012-1606(76)90285-2. [DOI] [PubMed] [Google Scholar]
  9. Hartmann J. F., Gwatkin R. B., Hutchison C. F. Early contact interactions between mammalian gametes in vitro: evidence that the vitellus influences adherence between sperm and zona pellucida. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2767–2769. doi: 10.1073/pnas.69.10.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hartmann J. F., Hutchison C. F. Contact between hamster spermatozoa and the zona pellucida releases a factor which influences early binding stages. J Reprod Fertil. 1974 Mar;37(1):61–66. doi: 10.1530/jrf.0.0370061. [DOI] [PubMed] [Google Scholar]
  11. Inoue M., Wolf D. P. Sperm binding characteristics of the murine zona pellucida. Biol Reprod. 1975 Oct;13(3):340–346. doi: 10.1095/biolreprod13.3.340. [DOI] [PubMed] [Google Scholar]
  12. Knox R. B., Clarke A., Harrison S., Smith P., Marchalonis J. J. Cell recognition in plants: Determinants of the stigma surface and their pollen interactions. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2788–2792. doi: 10.1073/pnas.73.8.2788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Longo F. J., Anderson E. Sperm differentiation in the sea urchins Arbacia punctulata and Strongylocentrotus purpuratus. J Ultrastruct Res. 1969 Jun;27(5):486–509. doi: 10.1016/s0022-5320(69)80046-8. [DOI] [PubMed] [Google Scholar]
  15. Müller W. E., Müller I., Zahn R. K., Kurelec B. Species-specific aggregation factor in sponges. VI. Aggregation receptor from the cell surface. J Cell Sci. 1976 Jul;21(2):227–241. doi: 10.1242/jcs.21.2.227. [DOI] [PubMed] [Google Scholar]
  16. Nowak T. P., Haywood P. L., Barondes S. H. Developmentally regulated lectin in embryonic chick muscle and a myogenic cell line. Biochem Biophys Res Commun. 1976 Feb 9;68(3):650–657. doi: 10.1016/0006-291x(76)91195-5. [DOI] [PubMed] [Google Scholar]
  17. Ofek I., Mirelman D., Sharon N. Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature. 1977 Feb 17;265(5595):623–625. doi: 10.1038/265623a0. [DOI] [PubMed] [Google Scholar]
  18. Rosen S. D., Kafka J. A., Simpson D. L., Barondes S. H. Developmentally regulated, carbohydrate-binding protein in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2554–2557. doi: 10.1073/pnas.70.9.2554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosen S. D., Reitherman R. W., Barondes S. H. Distinct lectin activities from six species of cellular slime molds. Exp Cell Res. 1975 Oct 1;95(1):159–166. doi: 10.1016/0014-4827(75)90621-7. [DOI] [PubMed] [Google Scholar]
  20. Schmell E., Earles B. J., Breaux C., Lennarz W. J. Identification of a sperm receptor on the surface of the eggs of the sea urchin Arbacia punctulata. J Cell Biol. 1977 Jan;72(1):35–46. doi: 10.1083/jcb.72.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stegink L. D., Meyer P. D., Chalkley R. Acrylamide gel electrophoresis of hemoglobin polypeptide chains. Anal Biochem. 1971 Jun;41(2):351–359. doi: 10.1016/0003-2697(71)90153-9. [DOI] [PubMed] [Google Scholar]
  22. Summers R. G., Hylander B. L. Species-specificity of acrosome reaction and primary gamete binding in echinoids. Exp Cell Res. 1975 Nov;96(1):63–68. doi: 10.1016/s0014-4827(75)80037-1. [DOI] [PubMed] [Google Scholar]
  23. Turner R. S., Burger M. M. Involvement of a carbohydrate group in the active site for surface guided reassociation of animal cells. Nature. 1973 Aug 24;244(5417):509–510. doi: 10.1038/244509a0. [DOI] [PubMed] [Google Scholar]
  24. Vacquier V. D., Payne J. E. Methods for quantitating sea urchin sperm-egg binding. Exp Cell Res. 1973 Nov;82(1):227–235. doi: 10.1016/0014-4827(73)90265-6. [DOI] [PubMed] [Google Scholar]
  25. Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]
  26. Wiese L., Wiese W. On sexual agglutination and mating type substances in isogamous dioecious chlamydomonads. IV. Unilateral inactivation of the sex contact capacity in compatible and incompatible taxa by alpha-mannosidase and snake venom protease. Dev Biol. 1975 Apr;43(2):264–276. doi: 10.1016/0012-1606(75)90026-3. [DOI] [PubMed] [Google Scholar]
  27. Yen P. H., Ballou C. E. Structure and immunochemistry of Hansenula wingei Y-2340 mannan. Biochemistry. 1974 May 21;13(11):2420–2427. doi: 10.1021/bi00708a029. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES