Abstract
In a marked-inversion-balanced lethal system mutations were accumulated at a minimum pressure of natural selection on 2000 second chromosomes of Drosophila melanogaster that originated from 4 stem chromosomes. Five enzyme loci were tested: alpha-glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), malate dehydrogenase (Mdh, EC 1.1.1.37), alcohol dehydrogenase (EC 1.1.1.1), hexokinase-C (Hex-C tentative name), and alpha-amylase (Amy, EC 3.2.1.1). Three band-morph mutants, one at the Mdh locus, one at the Hex-C locus, and one at the Amy locus, were detected out of 1,658,308 allele replications. In addition, 17 null mutants were found. Accepting that the number of structural genes is the same as that of bands in the salivary gland chromosomes, the total mutation rate per generation for all the structural genes in the second chromosomes is estimated to be 0.008-0.040, which is much smaller than that estimated for viability polygenes (0.12-0.17). Thus, it is speculated that most viability and other fitness polygenes are located in controlling regions outside the structural genes.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bahn E. Crossing over in the chromosomal region determining amylase isozymes in Drosophila melanogaster. Hereditas. 1967;58(1):1–12. doi: 10.1111/j.1601-5223.1967.tb02138.x. [DOI] [PubMed] [Google Scholar]
- Bewley G. C., Rawls J. M., Jr, Lucchesi J. C. Alpha-glycerophosphate dehydrogenase in Drosophila melanogaster: kinetic differences and developmental differentiation of the larval and adult isozymes. J Insect Physiol. 1974 Jan;20(1):153–165. doi: 10.1016/0022-1910(74)90130-9. [DOI] [PubMed] [Google Scholar]
- Georgiev G. P. On the structural organization of operon and the regulation of RNA synthesis in animal cells. J Theor Biol. 1969 Dec;25(3):473–490. doi: 10.1016/s0022-5193(69)80034-2. [DOI] [PubMed] [Google Scholar]
- Johnson F. M., Schaffer H. E. Isozyme variability in species of the genus Drosophila. VII. Genotype-environment relationships in populations of D. melanogaster from the Eastern United States. Biochem Genet. 1973 Oct;10(2):149–163. doi: 10.1007/BF00485762. [DOI] [PubMed] [Google Scholar]
- Judd B. H., Shen M. W., Kaufman T. C. The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics. 1972 May;71(1):139–156. doi: 10.1093/genetics/71.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., Ota T. On the rate of molecular evolution. J Mol Evol. 1971;1(1):1–17. doi: 10.1007/BF01659390. [DOI] [PubMed] [Google Scholar]
- King J. L., Jukes T. H. Non-Darwinian evolution. Science. 1969 May 16;164(3881):788–798. doi: 10.1126/science.164.3881.788. [DOI] [PubMed] [Google Scholar]
- King M. C., Wilson A. C. Evolution at two levels in humans and chimpanzees. Science. 1975 Apr 11;188(4184):107–116. doi: 10.1126/science.1090005. [DOI] [PubMed] [Google Scholar]
- Laird C. D., McCarthy B. J. Molecular characterization of the Drosophila genome. Genetics. 1969 Dec;63(4):865–882. doi: 10.1093/genetics/63.4.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewontin R. C., Hubby J. L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966 Aug;54(2):595–609. doi: 10.1093/genetics/54.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUKAI T. THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. SPONTANEOUS MUTATION RATE OF POLYGENES CONTROLLING VIABILITY. Genetics. 1964 Jul;50:1–19. doi: 10.1093/genetics/50.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall D. R., Brown A. H. The charge-state model of protein polymorphism in natural populations. J Mol Evol. 1975 Nov 4;6(3):149–163. doi: 10.1007/BF01732353. [DOI] [PubMed] [Google Scholar]
- Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M., Chakraborty R. Genetic distance and electrophoretic identity of proteins between taxa. J Mol Evol. 1973 Nov 27;2(4):323–328. doi: 10.1007/BF01654100. [DOI] [PubMed] [Google Scholar]
- O'Brien S. J. Comparative analysis of malate dehydrogenases of Drosophila melanogaster. Biochem Genet. 1973 Oct;10(2):191–205. doi: 10.1007/BF00485765. [DOI] [PubMed] [Google Scholar]
- Prakash S., Lewontin R. C., Hubby J. L. A molecular approach to the study of genic heterozygosity in natural populations. IV. Patterns of genic variation in central, marginal and isolated populations of Drosophila pseudoobscura. Genetics. 1969 Apr;61(4):841–858. doi: 10.1093/genetics/61.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw C. R. Electrophoretic variation in enzymes. Science. 1965 Aug 27;149(3687):936–943. doi: 10.1126/science.149.3687.936. [DOI] [PubMed] [Google Scholar]
- Tobari Y. N., Kojima K. I. A study of spontaneous mutation rates at ten loci detectable by starch gel electrophoresis in Drosophila melanogaster. Genetics. 1972 Mar;70(3):397–403. doi: 10.1093/genetics/70.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tracey M. L., Ayala F. J. Genetic load in natural populations: is it compatible with the hypothesis that many polymorphisms are maintained by natural selection? Genetics. 1974 Jul;77(3):569–589. doi: 10.1093/genetics/77.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J. R., Hurn J., Bonner J. Size and distribution of the repetitive segments of the Drosophila genome. J Mol Biol. 1972 Feb 28;64(1):211–219. doi: 10.1016/0022-2836(72)90330-0. [DOI] [PubMed] [Google Scholar]
- Yamaguchi O., Mukai T. Variation of spontaneous occurrence rates of chromosomal aberrations in the second chromosomes of Drosophila melanogaster. Genetics. 1974 Dec;78(4):1209–1221. doi: 10.1093/genetics/78.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]