Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jan;72(1):69–72. doi: 10.1073/pnas.72.1.69

Enhancement of soybean RNA polymerase I by auxin.

T J Guilfoyle, C Y Lin, Y M Chen, R T Nagao, J L Key
PMCID: PMC432242  PMID: 1054515

Abstract

When etiolated soybean seedlings are treated with the synthetic auxin, 2,4-dichlorophenoxy-acetic acid, cells of the mature hypocotyl become swollen and proliferate abnormally. This abnormal growth induced by auxin coincides with a 5- to 8-fold increase in the alpha-amanitin-insensitive RNA polymerase associated with isolated chromatin or nuclei. The alpha-amanitin-sensitive RNA polymerase activity of the auxin-treated hypocotyl was similar to that of control tissue. The increase in RNA polymerase I activity of chromatin and nuclei was maintained after solubilization and fractionation on DEAE-cellulose. Auxin thus appears to enhance RNA synthetic activity (i.e., ribosomal RNA) in mature soybean tissue by altering RNA polymerase I directly rather than by altering RNA polymerase I directly rather than by altering the chromatin template.

Full text

PDF
69

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry J., Gorski J. Uterine ribonucleic acid polymerase. Effect of estrogen on nucleotide incorporation into 3' chain termini. Biochemistry. 1971 Jun 8;10(12):2384–2390. doi: 10.1021/bi00788a032. [DOI] [PubMed] [Google Scholar]
  2. Beato M., Seifart K. H., Sekeris C. E. The effect of cortisol on the binding of actinomycin D to and on the template activity of isolated rat liver chromatin. Arch Biochem Biophys. 1970 May;138(1):272–284. doi: 10.1016/0003-9861(70)90308-5. [DOI] [PubMed] [Google Scholar]
  3. Fuhrman S. A., Gill G. N. Hormonal control of adrenal RNA polymerase activities. Endocrinology. 1974 Mar;94(3):691–700. doi: 10.1210/endo-94-3-691. [DOI] [PubMed] [Google Scholar]
  4. GORSKI J. EARLY ESTROGEN EFFECTS ON THE ACTIVITY OF UTERINE RIBONUCLEIC ACID POLYMERASE. J Biol Chem. 1964 Mar;239:889–892. [PubMed] [Google Scholar]
  5. Guilfoyle T. J., Hanson J. B. Greater Length of Ribonucleic Acid Synthesized by Chromatin-bound Polymerase from Auxin-treated Soybean Hypocotyls. Plant Physiol. 1974 Jan;53(1):110–113. doi: 10.1104/pp.53.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guilfoyle T. J., Hanson J. B. Increased Activity of Chromatin-bound Ribonucleic Acid Polymerase from Soybean Hypocotyl with Spermidine and High Ionic Strength. Plant Physiol. 1973 Jun;51(6):1022–1025. doi: 10.1104/pp.51.6.1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HUANG R. C., BONNER J. Histone, a suppressor of chromosomal RNA synthesis. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1216–1222. doi: 10.1073/pnas.48.7.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holm R. E., Key J. L. Inhibition of Auxin-induced Deoxyribonucleic Acid Synthesis and Chromatin Activity by 5-Fluorodeoxyuridine in Soybean Hypocotyl. Plant Physiol. 1971 May;47(5):606–608. doi: 10.1104/pp.47.5.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacob S. T. Mammalian RNA polymerases. Prog Nucleic Acid Res Mol Biol. 1973;13:93–126. doi: 10.1016/s0079-6603(08)60101-4. [DOI] [PubMed] [Google Scholar]
  10. Johnson K. D., Purves W. K. Ribonucleic Acid Synthesis by Cucumber Chromatin: Developmental and Hormone-induced Changes. Plant Physiol. 1970 Oct;46(4):581–585. doi: 10.1104/pp.46.4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johri M. M., Varner J. E. Enhancement of RNA synthesis in isolated pea nuclei by gibberellic acid. Proc Natl Acad Sci U S A. 1968 Jan;59(1):269–276. doi: 10.1073/pnas.59.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lin C. Y., Guilfoyle T. J., Chen Y. M., Nagao R. T., Key J. L. The separation of RNA polymerases I and II achieved by fractionation of plant chromatin. Biochem Biophys Res Commun. 1974 Sep 23;60(2):498–506. doi: 10.1016/0006-291x(74)90268-x. [DOI] [PubMed] [Google Scholar]
  14. O'Brien T. J., Jarvis B. C., Cherry J. H., Hanson J. B. Enhancement by 2,4-dichlorophenoxyacetic acid of chromatin RNA polymerase in soybean hypocotyl tissue. Biochim Biophys Acta. 1968 Nov 20;169(1):35–43. doi: 10.1016/0005-2787(68)90006-3. [DOI] [PubMed] [Google Scholar]
  15. Reeder R. H., Roeder R. G. Ribosomal RNA synthesis in isolated nuclei. J Mol Biol. 1972 Jun 28;67(3):433–441. doi: 10.1016/0022-2836(72)90461-5. [DOI] [PubMed] [Google Scholar]
  16. Roeder R. G., Rutter W. J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature. 1969 Oct 18;224(5216):234–237. doi: 10.1038/224234a0. [DOI] [PubMed] [Google Scholar]
  17. Roeder R. G., Rutter W. J. Specific nucleolar and nucleoplasmic RNA polymerases. Proc Natl Acad Sci U S A. 1970 Mar;65(3):675–682. doi: 10.1073/pnas.65.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weinmann R., Roeder R. G. Role of DNA-dependent RNA polymerase 3 in the transcription of the tRNA and 5S RNA genes. Proc Natl Acad Sci U S A. 1974 May;71(5):1790–1794. doi: 10.1073/pnas.71.5.1790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yu F. L., Feigelson P. Cortisone stimulation of nucleolar RNA polymerase activity. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2177–2180. doi: 10.1073/pnas.68.9.2177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zerwekh J. E., Haussler M. R., Lindell T. J. Rapid enhancement of chick intestinal DNA-dependent RNA polymerase II activity by 1 alpha, 25-dihydroxyvitamin D3, in vivo. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2337–2341. doi: 10.1073/pnas.71.6.2337. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES