Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jan;72(1):205–209. doi: 10.1073/pnas.72.1.205

Natural occurrence of poly(ADP-ribosyl) histones in rat liver.

K Ueda, A Omachi, M Kawaichi, O Hayaishi
PMCID: PMC432271  PMID: 164015

Abstract

Poly(ADP-ribose) bound to histones has been isolated from rat liver. When [14C]ribose was administered intraperitoneally to rats at a dosage of 300-750 mug (100-250 muCi)/10o g, approximately 1% of the radioactivity was recovered in the acid (5% CLCCCOOH)-INSOLUBLE MATERIAL OF THE LIVER NUCLEI 2 HR AFTER INJECTION. Of the acid-insoluble radioactivity, 4.5-9% was extractable with 0.25 N HCL. Carboxymethyl-cellulose column chromatography of the HCl-extracted material revealed that the radioactivity cochromatographed with histone subfractions f1 and, to a lesser extent, f2 and f3. Part of the protein-bound radioactivity was rendered acid-soluble by treatment with either snake venom phosphodiesterase or neutral NH2OH. From the enzyme digest, 5'-AMP and psiADP-ribose [2'-(5"-phosphoribosyl)-5'-AMP] were recovered, while the NH2OH treatment yielded ADP-ribose monomer and, presumably, oligomer. These observations indicate that ADP-ribose is attached to histones in vivo and is present both as a monomer and a polymer.

Full text

PDF
205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Colyer R. A., Burdette K. E., Kidwell W. R. Poly ADP-ribose synthesis and DNA replication in synchronized mouse L-cells. Biochem Biophys Res Commun. 1973 Aug 6;53(3):960–966. doi: 10.1016/0006-291x(73)90185-x. [DOI] [PubMed] [Google Scholar]
  2. Dietrich L. S., Jaus H., Siebert G. In vivo occurence of bound ADP-ribose. FEBS Lett. 1973 Dec 1;37(2):228–230. doi: 10.1016/0014-5793(73)80465-x. [DOI] [PubMed] [Google Scholar]
  3. Doly J., Mandel P. Mise en évidence de la biosynthèse in vivo d'un polymère composé, le polyadénosine diphosphoribose dans les noyaux de foie de poulet. C R Acad Sci Hebd Seances Acad Sci D. 1967 Jun 5;264(23):2687–2690. [PubMed] [Google Scholar]
  4. JOHNS E. W., PHILLIPS D. M., SIMSON P., BUTLER J. A. Improved fractionations of arginine-rich histones from calf thymus. Biochem J. 1960 Dec;77:631–636. doi: 10.1042/bj0770631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LUCK J. M., RASMUSSEN P. S., SATAKE K., TSVETIKOV A. N. Further studies on the fractionation of calf thymus histone. J Biol Chem. 1958 Dec;233(6):1407–1414. [PubMed] [Google Scholar]
  6. Nishizuka Y., Ueda K., Honjo T., Hayaishi O. Enzymic adenosine diphosphate ribosylation of histone and poly adenosine diphosphate ribose synthesis in rat liver nuclei. J Biol Chem. 1968 Jul 10;243(13):3765–3767. [PubMed] [Google Scholar]
  7. Nishizuka Y., Ueda K., Nakazawa K., Hayaishi O. Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J Biol Chem. 1967 Jul 10;242(13):3164–3171. [PubMed] [Google Scholar]
  8. Nishizuka Y., Ueda K., Yoshihara K., Yamamura H., Takeda M., Hayaishi O. Enzymic adenosine diphosphoribosylation of nuclear proteins. Cold Spring Harb Symp Quant Biol. 1969;34:781–786. doi: 10.1101/sqb.1969.034.01.088. [DOI] [PubMed] [Google Scholar]
  9. Ord M. G., Stocken L. A. Metabolic properties of histones from rat liver and thymus gland. Biochem J. 1966 Mar;98(3):888–897. doi: 10.1042/bj0980888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Otake H., Miwa M., Fujimura S., Sugimura T. Binding of ADP-ribose polymer with histone. J Biochem. 1969 Jan;65(1):145–146. [PubMed] [Google Scholar]
  11. Reeder R. H., Ueda K., Honjo T., Nishizuka Y., Hayaishi O. Studies on the polymer of adenosine diphosphate ribose. II. Characterization of the polymer. J Biol Chem. 1967 Jul 10;242(13):3172–3179. [PubMed] [Google Scholar]
  12. Römer V., Lambrecht J., Kittler M., Hilz H. Identity of nuclear NAD nucleosidase with a polyADP-ribose forming enzyme in Ehrlich ascites tumor cells. Hoppe Seylers Z Physiol Chem. 1968 Jan;349(1):109–112. [PubMed] [Google Scholar]
  13. SHUSTER L., GOLDIN A. The incorporation of C14-glucose and C14-ribose into mouse liver diphosphopyridine nucleotide. J Biol Chem. 1958 Feb;230(2):873–881. [PubMed] [Google Scholar]
  14. Shima T., Hasegawa S., Fujimura S., Matsubara H., Sugimura T. Studies on poly adenosine diphosphate-ribose. VII. Methods of separation and identification of 2'-(5"-phosphoribosyl)-5'-adenosine monophosphate, ribosyladenosine monophosphate, and phosphoribosyladenosine. J Biol Chem. 1969 Dec 25;244(24):6632–6635. [PubMed] [Google Scholar]
  15. Smith J. A., Stocken L. A. Identification of poly (ADP-ribose) covalently bound to histone F1 in vivo. Biochem Biophys Res Commun. 1973 Sep 5;54(1):297–300. doi: 10.1016/0006-291x(73)90922-4. [DOI] [PubMed] [Google Scholar]
  16. Sugimura T., Fujimura S., Hasegawa S., Kawamura Y. Polymerization of the adenosine 5'-diphosphate ribose moiety of NAD by rat liver nuclear enzyme. Biochim Biophys Acta. 1967 Apr 18;138(2):438–441. doi: 10.1016/0005-2787(67)90507-2. [DOI] [PubMed] [Google Scholar]
  17. Ueda K., Reeder R. H., Honjo T., Nishizuka Y., Hayaishi O. Poly adenosine diphosphate ribose synthesis associated with chromatin. Biochem Biophys Res Commun. 1968 May 10;31(3):379–385. doi: 10.1016/0006-291x(68)90486-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES