Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jan;72(1):210–213. doi: 10.1073/pnas.72.1.210

The antagonistic effect of an inhalation anesthetic and high pressure on the phase diagram of mixed dipalmitoyl-dimyristoylphosphatidylcholine bilayers.

J R Trudell, D G Payan, J H Chin, E N Cohen
PMCID: PMC432272  PMID: 164016

Abstract

Several workers have shown that phase transition-related changes in membrane lipids have a profound effect on membrane-solvated protein function. This phase transition temperature dependence has been explained as resulting from the formation of lateral phase separations within the membrane bilayer. The present study demonstrates that a clinical concentration of an inhalation anesthetic produces changes in both the phase transition temperature of pure lipid bilayers and the lateral phase separation temperature of mixed dipalmitoyl- and dimyristoylphosphatidylcholine bilayers of a magnitude sufficient to influence protein function. It is further shown that pressure is able to antagonize the effect of the anesthetic on these transition temperatures. It is proposed that anesthetic action within nerve membranes may be the result of changes in the lateral phase separation-controlled environment of the membrane-solvated proteins essential to nerve function.

Full text

PDF
210

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chapman D., Urbina J. Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry. J Biol Chem. 1974 Apr 25;249(8):2512–2521. [PubMed] [Google Scholar]
  2. Chapman D., Urbina J. Phase transitions and bilayer structure of Mycoplasma laidlawii B. FEBS Lett. 1971 Jan 12;12(3):169–172. doi: 10.1016/0014-5793(71)80060-1. [DOI] [PubMed] [Google Scholar]
  3. Chen Y. S., Hubbell W. L. Temperature- and light-dependent structural changes in rhodopsin-lipid membranes. Exp Eye Res. 1973 Dec 24;17(6):517–532. doi: 10.1016/0014-4835(73)90082-1. [DOI] [PubMed] [Google Scholar]
  4. Eletr S., Williams M. A., Watkins T., Keith A. D. Perturbations of the dynamics of lipid alkyl chains in membrane systems: effect on the activity of membrane-bound enzymes. Biochim Biophys Acta. 1974 Mar 15;339(2):190–201. doi: 10.1016/0005-2736(74)90317-4. [DOI] [PubMed] [Google Scholar]
  5. Hayashi M., Muramatsu T., Hara I. Surface properties of synthetic phospholipids. II. Thermal phase transitions in monolayers. Biochim Biophys Acta. 1973 Jan 26;291(2):335–343. doi: 10.1016/0005-2736(73)90486-0. [DOI] [PubMed] [Google Scholar]
  6. JOHNSON F. H., FLAGLER E. A. Hydrostatic pressure reversal of narcosis in tadpoles. Science. 1950 Jul 21;112(2899):91–92. doi: 10.1126/science.112.2899.91-a. [DOI] [PubMed] [Google Scholar]
  7. Lever M. J., Miller K. W., Paton W. D., Smith E. B. Pressure reversal of anaesthesia. Nature. 1971 Jun 11;231(5302):368–371. doi: 10.1038/231368a0. [DOI] [PubMed] [Google Scholar]
  8. Linden C. D., Wright K. L., McConnell H. M., Fox C. F. Lateral phase separations in membrane lipids and the mechanism of sugar transport in Escherichia coli. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2271–2275. doi: 10.1073/pnas.70.8.2271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lyons J. M. Phase transitions and control of cellular metabolism at low temperatures. Cryobiology. 1972 Oct;9(5):341–350. doi: 10.1016/0011-2240(72)90152-6. [DOI] [PubMed] [Google Scholar]
  10. McConnell H. M., Wright K. L., McFarland B. G. The fraction of the lipid in a biological membrane that is in a fluid state: a spin label assay. Biochem Biophys Res Commun. 1972 Apr 14;47(1):273–281. doi: 10.1016/s0006-291x(72)80039-1. [DOI] [PubMed] [Google Scholar]
  11. Petit V. A., Edidin M. Lateral phase separation of lipids in plasma membranes: effect of temperature on the mobility of membrane antigens. Science. 1974 Jun 14;184(4142):1183–1185. doi: 10.1126/science.184.4142.1183. [DOI] [PubMed] [Google Scholar]
  12. Shimshick E. J., McConnell H. M. Lateral phase separation in phospholipid membranes. Biochemistry. 1973 Jun 5;12(12):2351–2360. doi: 10.1021/bi00736a026. [DOI] [PubMed] [Google Scholar]
  13. Trudell J. R., Hubbell W. L., Cohen E. N., Kendig J. J. Pressure reversal of anesthesia: the extent of small-molecule exclusion from spin-labeled phospholipid model membranes. Anesthesiology. 1973 Mar;38(3):207–211. doi: 10.1097/00000542-197303000-00002. [DOI] [PubMed] [Google Scholar]
  14. Trudell J. R., Hubbell W. L., Cohen E. N. Pressure reversal of inhalation anesthetic-induced disorder in spin-labeled phospholipid vesicles. Biochim Biophys Acta. 1973 Jan 26;291(2):328–334. doi: 10.1016/s0005-2736(73)80001-x. [DOI] [PubMed] [Google Scholar]
  15. Trudell J. R., Payan D. G., Chin J. H., Cohen E. N. The effect of pressure on the phase diagram of mixed dipalmitoyl-dimyristoylphosphatidylcholine bilayers. Biochim Biophys Acta. 1974 Nov 27;373(1):141–144. doi: 10.1016/0005-2736(74)90113-8. [DOI] [PubMed] [Google Scholar]
  16. Wilson G., Fox C. F. Biogenesis of microbial transport systems: evidnce for coupled incorporation of newly synthesized lipids and proteins into membrane. J Mol Biol. 1971 Jan 14;55(1):49–60. doi: 10.1016/0022-2836(71)90280-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES