Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jan;72(1):314–317. doi: 10.1073/pnas.72.1.314

A new chemical procedure for 32P-labeling of ribonucleic acids at their 5'-ends after isolation.

E Rapaport, P C Zamecnik
PMCID: PMC432295  PMID: 1090934

Abstract

A new technique, which utilizes the chemical reaction between [32P]diimidazolidate of orthophosphate and the cetyltrimethylammonium salt of high-molecular-weight RNA in nonaqueous dimethyl formamide, has been developed for the 32P-labeling of RNAs after isolation. The radioactive label of high specific activity is introduced onto a phosphorylated 5'-end of the RNA and renders it suitable for 5'-terminal group analysis. When the labeling reaction was applied to the 70S RNA of avian myeloblastosis virus, a labeled 35S RNA was isolated on sucrose-dimethyl sulfoxide gradients without apparent degradation.

Full text

PDF
314

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cashel M., Kalbacher B. The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J Biol Chem. 1970 May 10;245(9):2309–2318. [PubMed] [Google Scholar]
  2. Dube S. K., Marcker K. A. The nucleotide sequence of N-formyl-methionyl-transfer RNA. Partial digestion with pancreatic and T-1 ribonuclease and derivation of the total primary structure. Eur J Biochem. 1969 Mar;8(2):256–262. doi: 10.1111/j.1432-1033.1969.tb00522.x. [DOI] [PubMed] [Google Scholar]
  3. Faras A. J., Taylor J. M., Levinson W. E., Goodman H. M., Bishop J. M. RNA-directed DNA polymerase of Rous sarcoma virus: initiation of synthesis with 70 S viral RNA as template. J Mol Biol. 1973 Sep 5;79(1):163–183. doi: 10.1016/0022-2836(73)90277-5. [DOI] [PubMed] [Google Scholar]
  4. Fellner P., Ehresmann C., Ebel J. P. Nucleotide sequences present within the 16S ribosomal RNA of Escherichia coli. Nature. 1970 Jan 3;225(5227):26–29. doi: 10.1038/225026a0. [DOI] [PubMed] [Google Scholar]
  5. HOARD D. E., OTT D. G. CONVERSION OF MONO- AND OLIGODEOXYRIBONUCLEOTIDES TO 5-TRIPHOSPHATES. J Am Chem Soc. 1965 Apr 20;87:1785–1788. doi: 10.1021/ja01086a031. [DOI] [PubMed] [Google Scholar]
  6. Hatlen L. E., Amaldi F., Attardi G. Oligonucleotide pattern after pancreatic ribonuclease digestion and the 3' and 5' termini of 5S ribonucleic acid from HeLa cells. Biochemistry. 1969 Dec;8(12):4989–5005. doi: 10.1021/bi00840a048. [DOI] [PubMed] [Google Scholar]
  7. Ilan J., Ilan J. Sequence homology at the 5'-termini of insect messenger RNAs. Proc Natl Acad Sci U S A. 1973 May;70(5):1355–1358. doi: 10.1073/pnas.70.5.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kozarich J. W., Chinault A. C., Hecht S. M. Ribonucleoside phosphates via phosphorimidazolidate intermediates. Synthesis of pseudoadenosine 5'-triphosphate. Biochemistry. 1973 Oct 23;12(22):4458–4463. doi: 10.1021/bi00746a024. [DOI] [PubMed] [Google Scholar]
  9. Mandeles S., Kammen H. O. Use of activated charcoal for adsorption and elution of ribooligonucleotides. Anal Biochem. 1966 Dec;17(3):540–544. doi: 10.1016/0003-2697(66)90189-8. [DOI] [PubMed] [Google Scholar]
  10. Miura K., Watanabe K., Sugiura M. 5'-Terminal nucleotide sequences of the double-stranded RNA of silkworm cytoplasmic polyhedrosis virus. J Mol Biol. 1974 Jun 15;86(1):31–48. doi: 10.1016/s0022-2836(74)80005-7. [DOI] [PubMed] [Google Scholar]
  11. RAJBHANDARY U. L., YOUNG R. J., KHORANA H. G. STUDIES ON POLYNUCLEOTIDES. XXXII. THE LABELING OF END GROUPS IN POLYNUCLEOTIDE CHAINS: THE SELECTIVE PHOSPHORYLATION OF PHOSPHOMONOESTER GROUPS IN AMINO ACID ACCEPTOR RIBONUCLEIC ACIDS. J Biol Chem. 1964 Nov;239:3875–3884. [PubMed] [Google Scholar]
  12. RALPH R. K., BELLAMY A. R. ISOLATION AND PURIFICATION OF UNDEGRADED RIBONUCLEIC ACIDS. Biochim Biophys Acta. 1964 May 18;87:9–16. doi: 10.1016/0926-6550(64)90041-6. [DOI] [PubMed] [Google Scholar]
  13. RajBhandary U. L., Chang S. H. Studies on polynucleotides. LXXXII. Yeast phenylalanine transfer ribonucleic acid: partial digestion with ribonuclease T-1 and derivation of the total primary structure. J Biol Chem. 1968 Feb 10;243(3):598–608. [PubMed] [Google Scholar]
  14. Silber R., Malathi V. G., Hurwitz J. Purification and properties of bacteriophage T4-induced RNA ligase. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3009–3013. doi: 10.1073/pnas.69.10.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Silber R., Malathi V. G., Schulman L. H., Hurwitz J., Duesberg P. H. Studies of the Rous sarcoma virus RNA: characterization of the 5'-terminus. Biochem Biophys Res Commun. 1973 Jan 23;50(2):467–472. doi: 10.1016/0006-291x(73)90863-2. [DOI] [PubMed] [Google Scholar]
  16. Stephenson M. L., Scott J. F., Zamecnik P. C. Evidence that the polyadenylic acid segment of "35S" RNA of avian myeloblastosis virus is located at the 3'-OH terminus. Biochem Biophys Res Commun. 1973 Nov 1;55(1):8–16. doi: 10.1016/s0006-291x(73)80052-x. [DOI] [PubMed] [Google Scholar]
  17. Stephenson M. L., Wirthlin L. S., Scott J. F., Zamecnik P. C. The 3'-terminal nucleosides of the high molecular weight RNA of avian myeloblastosis virus. Proc Natl Acad Sci U S A. 1972 May;69(5):1176–1180. doi: 10.1073/pnas.69.5.1176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Takanami M. Analysis of the 5'-terminal nucleotide sequences of ribonucleic acids 1. the 5'-termini of Excherichia coli ribosomal RNA. J Mol Biol. 1967 Jan 28;23(2):135–148. doi: 10.1016/s0022-2836(67)80022-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES