Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Feb;72(2):669–672. doi: 10.1073/pnas.72.2.669

Blue dextran-sepharose: an affinity column for the dinucleotide fold in proteins.

S T Thompson, K H Cass, E Stellwagen
PMCID: PMC432376  PMID: 164664

Abstract

A procedure is described to utilize blue dextran-Sepharose as an affinity chromatographic column specific for the super-secondary structure called the dinucleotide fold, which forms the binding sites for substrates and effectors on a wide range of proteins. The procedure can be used to identify proteins, either purified or in crude cellular extracts, that possess the dinucleotide fold and to significantly improve the purification procedures for those proteins that possess the fold.

Full text

PDF
669

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. J., McPherson A., Jr, Rossmann M. G., Schevitz R. W., Wonacott A. J. The structure of the nicotinamide-adenine dinucleotide coenzyme when bound to lactate dehydrogenase. J Mol Biol. 1970 Jul 14;51(1):31–38. doi: 10.1016/0022-2836(70)90267-6. [DOI] [PubMed] [Google Scholar]
  2. Andersen R. D., Apgar P. A., Burnett R. M., Darling G. D., Lequesne M. E., Mayhew S. G., Ludwig M. L. Structure of the radical form of clostridial flavodoxin: a new molecular model. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3189–3191. doi: 10.1073/pnas.69.11.3189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson D. G., Hammes G. G., Walz F. G., Jr Binding of phosphate ligands to ribonuclease A. Biochemistry. 1968 May;7(5):1637–1645. doi: 10.1021/bi00845a004. [DOI] [PubMed] [Google Scholar]
  4. Anderson W. F., Fletterick R. J., Steitz T. A. Structure of yeast hexokinase. 3. Low resolution structure of a second crystal form showing a different quaternary structure, heterologous interaction of subunits and substrate binding. J Mol Biol. 1974 Jun 25;86(2):261–269. doi: 10.1016/0022-2836(74)90017-5. [DOI] [PubMed] [Google Scholar]
  5. Arnone A., Bier C. J., Cotton F. A., Hazen E. E., Jr, Richardson D. C., Richardson J. S. The extracellular nuclease of Staphylococcus aureus: structures of the native enzyme and an enzyme-inhibitor complex at 4 A resolution. Proc Natl Acad Sci U S A. 1969 Oct;64(2):420–427. doi: 10.1073/pnas.64.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blake C. C., Evans P. R. Structure of horse muscle phosphoglycerate kinase. Some results on the chain conformation, substrate binding and evolution of the molecule from a 3 angstrom Fourier map. J Mol Biol. 1974 Apr 25;84(4):585–601. doi: 10.1016/0022-2836(74)90118-1. [DOI] [PubMed] [Google Scholar]
  7. Blume K. G., Hoffbauer R. W., Busch D., Arnold H., Löhr G. W. Purification and properties of pyruvate kinase in normal and in pyruvate kinase deficient human red blood cells. Biochim Biophys Acta. 1971 Feb 10;227(2):364–372. doi: 10.1016/0005-2744(71)90068-4. [DOI] [PubMed] [Google Scholar]
  8. Bryant T. N., Watson H. C., Wendell P. L. Structure of yeast phosphoglycerate kinase. Nature. 1974 Jan 4;247(5435):14–17. doi: 10.1038/247014a0. [DOI] [PubMed] [Google Scholar]
  9. Brändén C. I., Eklund H., Nordström B., Boiwe T., Söderlund G., Zeppezauer E., Ohlsson I., Akeson A. Structure of liver alcohol dehydrogenase at 2.9-angstrom resolution. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2439–2442. doi: 10.1073/pnas.70.8.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Buehner M., Ford G. C., Moras D., Olsen K. W., Rossman M. G. D-glyceraldehyde-3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3052–3054. doi: 10.1073/pnas.70.11.3052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Campbell J. W., Watson H. C., Hodgson G. I. Structure of yeast phosphoglycerate mutase. Nature. 1974 Jul 26;250(464):301–303. doi: 10.1038/250301a0. [DOI] [PubMed] [Google Scholar]
  12. Cuatrecasas P., Fuchs S., Anfinsen C. B. The binding of nucleotides and calcium to the extracellular nuclease of Staphylococcus aureus. Studies by gel filtration. J Biol Chem. 1967 Jul 10;242(13):3063–3067. [PubMed] [Google Scholar]
  13. Drenth J., Hol W. G., Jansonius J. N., Koekoek R. A comparison of the three-dimensional structures of subtilisin BPN' and subtilisin novo. Cold Spring Harb Symp Quant Biol. 1972;36:107–116. doi: 10.1101/sqb.1972.036.01.016. [DOI] [PubMed] [Google Scholar]
  14. Griffin C. C., Houck B. N., Brand L. Purification of Escherichia coli phosphofructokinase. Biochem Biophys Res Commun. 1967 May 5;27(3):287–293. doi: 10.1016/s0006-291x(67)80094-9. [DOI] [PubMed] [Google Scholar]
  15. Hill E., Tsernoglou D., Webb L., Banaszak L. J. Polypeptide conformation of cytoplasmic malate dehydrogenase from an electron density map at 3.0 angstrom resolution. J Mol Biol. 1972 Dec 30;72(3):577–589. doi: 10.1016/0022-2836(72)90176-3. [DOI] [PubMed] [Google Scholar]
  16. Kopperschläger G., Diezel W., Freyer R., Liebe S., Hofmann E. Wechselwirkungen der Hefe-Phosphofructokinase mit Dextranblau 2000. Eur J Biochem. 1971 Sep 13;22(1):40–45. doi: 10.1111/j.1432-1033.1971.tb01512.x. [DOI] [PubMed] [Google Scholar]
  17. Mayhew S. G. Studies on flavin binding in flavodoxins. Biochim Biophys Acta. 1971 May 12;235(2):289–302. doi: 10.1016/0005-2744(71)90207-5. [DOI] [PubMed] [Google Scholar]
  18. McPherson A., Jr Interaction of lactate dehydrogenase with its coenzyme, nicotinamide-adenine dinucleotide. J Mol Biol. 1970 Jul 14;51(1):39–46. doi: 10.1016/0022-2836(70)90268-8. [DOI] [PubMed] [Google Scholar]
  19. Rossmann M. G., Moras D., Olsen K. W. Chemical and biological evolution of nucleotide-binding protein. Nature. 1974 Jul 19;250(463):194–199. doi: 10.1038/250194a0. [DOI] [PubMed] [Google Scholar]
  20. Ryan L. D., Vestling C. S. Rapid purification of lactate dehydrogenase from rat liver and hepatoma: a new approach. Arch Biochem Biophys. 1974 Jan;160(1):279–284. doi: 10.1016/s0003-9861(74)80035-4. [DOI] [PubMed] [Google Scholar]
  21. Schulz G. E., Elzinga M., Marx F., Schrimer R. H. Three dimensional structure of adenyl kinase. Nature. 1974 Jul 12;250(462):120–123. doi: 10.1038/250120a0. [DOI] [PubMed] [Google Scholar]
  22. Schulz G. E., Schirmer R. H. Topological comparison of adenyl kinase with other proteins. Nature. 1974 Jul 12;250(462):142–144. doi: 10.1038/250142a0. [DOI] [PubMed] [Google Scholar]
  23. Staal G. E., Koster J. F., Kamp H., van Milligen-Boersma L., Veeger C. Human erythrocyte pyruvate kinase. Its purification and some properties. Biochim Biophys Acta. 1971 Jan 13;227(1):86–96. doi: 10.1016/0005-2744(71)90170-7. [DOI] [PubMed] [Google Scholar]
  24. Staal G. E., Visser J., Veeger C. Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys Acta. 1969 Jul 8;185(1):39–48. doi: 10.1016/0005-2744(69)90280-0. [DOI] [PubMed] [Google Scholar]
  25. Stellwagen E., Shulman R. G. Nuclear magnetic resonance study of exchangeable protons in ferrocytochrome c. J Mol Biol. 1973 Apr 25;75(4):683–698. doi: 10.1016/0022-2836(73)90301-x. [DOI] [PubMed] [Google Scholar]
  26. Swart A. C., Hemker H. C. Separation of blood coagulation factors II, VII, IX and X by gel filtration in the presence of dextran blue. Biochim Biophys Acta. 1970 Dec 29;222(3):692–695. doi: 10.1016/0304-4165(70)90203-5. [DOI] [PubMed] [Google Scholar]
  27. Takano T., Kallai O. B., Swanson R., Dickerson R. E. The structure of ferrocytochrome c at 2.45 A resolution. J Biol Chem. 1973 Aug 10;248(15):5234–5255. [PubMed] [Google Scholar]
  28. VERLICK S. F. Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes. J Biol Chem. 1958 Dec;233(6):1455–1467. [PubMed] [Google Scholar]
  29. Watenpaugh K. D., Sieker L. C., Jensen L. H., Legall J., Dubourdieu M. Structure of the oxidized form of a flavodoxin at 2.5-Angstrom resolution: resolution of the phase ambiguity by anomalous scattering. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3185–3188. doi: 10.1073/pnas.69.11.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Webb L. E., Hill E. J., Banaszak L. J. Conformation of nicotinamide adenine dinucleotide bound to cytoplasmic malate dehydrogenase. Biochemistry. 1973 Dec 4;12(25):5101–5109. doi: 10.1021/bi00749a013. [DOI] [PubMed] [Google Scholar]
  31. Wright C. S., Alden R. A., Kraut J. Structure of subtilisin BPN' at 2.5 angström resolution. Nature. 1969 Jan 18;221(5177):235–242. doi: 10.1038/221235a0. [DOI] [PubMed] [Google Scholar]
  32. Wyckoff H. W., Tsernoglou D., Hanson A. W., Knox J. R., Lee B., Richards F. M. The three-dimensional structure of ribonuclease-S. Interpretation of an electron density map at a nominal resolution of 2 A. J Biol Chem. 1970 Jan 25;245(2):305–328. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES