Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Mar;72(3):844–848. doi: 10.1073/pnas.72.3.844

Identification of a ribosomal protein essential for peptidyl transferase activity.

V G Moore, R E Atchison, G Thomas, M Moran, H F Noller
PMCID: PMC432417  PMID: 1055382

Abstract

Extraction with 2 M lithium chloride removes a group of proteins (LiC1 SP) from 50S ribosomal subunits. Both the LiC1 SP and the resulting cores, which contain the remaining proteins as well as 5S and 23S RNA, lack peptidyl transferase activity, as measured by the "fragment reaction". Activity can be restored to the LiC1 cores by reconstitution with LiC1 SP under conditions of high temperature and high ionic strength. The LiC1 SP proteins were fractionated by carboxymethyl-cellulose and Sephadex G-100, and the individual fractions were tested by this reconstitution system. Of the 18 ribosomal proteins found in the LiC1 SP, only L16 is essential for reconstitution of peptidyl transferase activity.

Full text

PDF
844

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bispink L., Matthaei H. Photoaffinity labeling of 23 S rRNA in Escherichia coli ribosomes with poly(U)-coded ethyl 2-diazomalonyl-Phe-tRNA. FEBS Lett. 1973 Dec 1;37(2):291–294. doi: 10.1016/0014-5793(73)80480-6. [DOI] [PubMed] [Google Scholar]
  2. Cerná J., Rychlík I., Jonák J. Peptidyl-transferase activity of Escherichia coli ribosomes digested by ribonuclease T 1 . Eur J Biochem. 1973 May 2;34(3):551–556. doi: 10.1111/j.1432-1033.1973.tb02794.x. [DOI] [PubMed] [Google Scholar]
  3. Chang F. N., Flaks J. G. Topography of the Escherichia coli ribosome. II. Preliminary sequence of 50 s subunit protein attack by trypsin and its correlation with functional activities. J Mol Biol. 1971 Oct 28;61(2):387–400. doi: 10.1016/0022-2836(71)90388-3. [DOI] [PubMed] [Google Scholar]
  4. Czernilofsky A. P., Collatz E. E., Stöffler G., Kuechler E. Proteins at the tRNA binding sites of Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1974 Jan;71(1):230–234. doi: 10.1073/pnas.71.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  6. Girshovich A. S., Bochkareva E. S., Kramarov V. M., Ovchinnikov YuA E. coli 30 S and 50 S ribosomal subparticle components in the localization region of the tRNA acceptor terminus. FEBS Lett. 1974 Sep 1;45(1):213–217. doi: 10.1016/0014-5793(74)80847-1. [DOI] [PubMed] [Google Scholar]
  7. Harris R. J., Greenwell P., Symons R. H. Affinity labelling of ribosomal peptidyl transferase by a puromycin analogue. Biochem Biophys Res Commun. 1973 Nov 1;55(1):117–124. doi: 10.1016/s0006-291x(73)80067-1. [DOI] [PubMed] [Google Scholar]
  8. Hauptmann R., Czernilofsky A. P., Voorma H. O., Stöffler G., Kuechler E. Identification of a protein at the ribosomal donor-site by affinity labeling. Biochem Biophys Res Commun. 1974 Jan 23;56(2):331–337. doi: 10.1016/0006-291x(74)90846-8. [DOI] [PubMed] [Google Scholar]
  9. Kaltschmidt E., Wittmann H. G. Ribosomal proteins. VII. Two-dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Anal Biochem. 1970 Aug;36(2):401–412. doi: 10.1016/0003-2697(70)90376-3. [DOI] [PubMed] [Google Scholar]
  10. Kaltschmidt E., Wittmann H. G. Ribosomal proteins. XII. Number of proteins in small and large ribosomal subunits of Escherichia coli as determined by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1276–1282. doi: 10.1073/pnas.67.3.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marcot-Queiroz J., Monier R. Les ribosomes d'Escherichia coli. II. Préparation de particules 18S et 25S par traitement des ribosomes au chlorure de lithium. Bull Soc Chim Biol (Paris) 1967;49(5):477–494. [PubMed] [Google Scholar]
  12. Monro R. E. Catalysis of peptide bond formation by 50 S ribosomal subunits from Escherichia coli. J Mol Biol. 1967 May 28;26(1):147–151. doi: 10.1016/0022-2836(67)90271-9. [DOI] [PubMed] [Google Scholar]
  13. Monro R. E., Staehelin T., Celma M. L., Vazquez D. The peptidyl transferase activity of ribosomes. Cold Spring Harb Symp Quant Biol. 1969;34:357–368. doi: 10.1101/sqb.1969.034.01.042. [DOI] [PubMed] [Google Scholar]
  14. Moore P. B., Traut R. R., Noller H., Pearson P., Delius H. Ribosomal proteins of Escherichia coli. II. Proteins from the 30 s subunit. J Mol Biol. 1968 Feb 14;31(3):441–461. doi: 10.1016/0022-2836(68)90420-8. [DOI] [PubMed] [Google Scholar]
  15. Nierhaus D., Nierhaus K. H. Identification of the chloramphenicol-binding protein in Escherichia coli ribosomes by partial reconstitution. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2224–2228. doi: 10.1073/pnas.70.8.2224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nierhaus K. H., Montejo V. A protein involved in the peptidyltransferase activity of Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1931–1935. doi: 10.1073/pnas.70.7.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Noller H. F., Chaires J. B. Functional modification of 16S ribosomal RNA by kethoxal. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3115–3118. doi: 10.1073/pnas.69.11.3115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Noller H. F., Chang C., Thomas G., Aldridge J. Chemical modification of the transfer RNA and polyuridylic acid binding sites of Escherichia coli 30 s ribosomal subunits. J Mol Biol. 1971 Nov 14;61(3):669–679. doi: 10.1016/0022-2836(71)90071-4. [DOI] [PubMed] [Google Scholar]
  19. Oen H., Pellegrini M., Eilat D., Cantor C. R. Identification of 50S proteins at the peptidyl-tRNA binding site of Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2799–2803. doi: 10.1073/pnas.70.10.2799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pongs O., Bald R., Erdmann V. A. Identification of chloramphenicol-binding protein in Escherichia coli ribosomes by affinity labeling. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2229–2233. doi: 10.1073/pnas.70.8.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pongs O., Bald R., Wagner T., Erdmann V. A. Irreversible binding of N-iodoacetylpuromycin to E. coli ribosomes. FEBS Lett. 1973 Sep 1;35(1):137–140. doi: 10.1016/0014-5793(73)80595-2. [DOI] [PubMed] [Google Scholar]
  22. Reid M. S., Bieleski R. L. A simple apparatus for vertical flat-sheet polyacrylamide gel electrophoresis. Anal Biochem. 1968 Mar;22(3):374–381. doi: 10.1016/0003-2697(68)90278-9. [DOI] [PubMed] [Google Scholar]
  23. Staehelin T., Maglott D. M., Monro R. E. On the catalytic center of peptidyl transfer: a part of the 50 S ribosome structure. Cold Spring Harb Symp Quant Biol. 1969;34:39–48. doi: 10.1101/sqb.1969.034.01.008. [DOI] [PubMed] [Google Scholar]
  24. TRAUT R. R., MONRO R. E. THE PUROMYCIN REACTION AND ITS RELATION TO PROTEIN SYNTHESIS. J Mol Biol. 1964 Oct;10:63–72. doi: 10.1016/s0022-2836(64)80028-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES