Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Mar;72(3):883–887. doi: 10.1073/pnas.72.3.883

A mitochondrial carnitine acylcarnitine translocase system.

S V Pande
PMCID: PMC432425  PMID: 1055387

Abstract

Acetylation of added (-)carnitine by heart mitochondira coupled to the oxidation of pyruvate in the presence of malonate was inhibited, apparently competitively, by long chain acyl(+)carnitines although the activity of carnitine acetyltransferase (EC 2.3.1.7) itself was not affected. Mitochondria have been found to possess a translocase system that allows the transport of carnitine and acylcarnitines by exchange diffusion, and interaction with this transport appears to be the cause of long chain acyl(+)carnitine inhibition. These c-nclusions are based on the following observations: (a) exposure of intact, but not of denatured or disrupted, mitochondria to [14-C]carnitine efflux was saturable at low lwvels of carnitine or acylcarnitines, showed temperature dependence, and was more rapid with acyl(-)carnitines than with acyl(+)carnitines--such stereospecificity was not noticeable with free carnitine; (c) long chain acyl-(+)carnitines inhibited the carnitine-carnitine exchange and higher concentrations of carnitine decreased this inhibition; (d) direct estimations showed the presence of endogenous (-)carnitine in mitochondria that effluxed by freezing and thawing of mitochondria; (e) the amount of total endogenous (-)carnitine present was not affected by prior exposure of mitochondria to (-)carnitine or acetyl(-)carnitine. These results indicate that the carnitine-dependent translocation of acyl groups across mitochondrial inner membrane involves the participation of a carnitine acylcarnitine translocase system.

Full text

PDF
883

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brdiczka D., Gerbitz K., Pette D. Localization and function of external and internal carnitine acetyltransferases in mitochondria of rat liver and pig kidney. Eur J Biochem. 1969 Dec;11(2):234–240. doi: 10.1111/j.1432-1033.1969.tb00765.x. [DOI] [PubMed] [Google Scholar]
  2. Brosnan J. T., Fritz I. B. The permeability of mitochondria to carnitine and acetylcarnitine. Biochem J. 1971 Dec;125(4):94P–95P. doi: 10.1042/bj1250094pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brosnan J. T., Kopec B., Fritz I. B. The localization of carnitine palmitoyltransferase on the inner membrane of bovine liver mitochondria. J Biol Chem. 1973 Jun 10;248(11):4075–4082. [PubMed] [Google Scholar]
  4. Cederblad G., Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta. 1972 Mar;37:235–243. doi: 10.1016/0009-8981(72)90438-x. [DOI] [PubMed] [Google Scholar]
  5. Chase J. F., Tubbs P. K. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters. Biochem J. 1972 Aug;129(1):55–65. doi: 10.1042/bj1290055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FRITZ I. B., SCHULTZ S. K., SRERE P. A. Properties of partially purified carnitine acetyltransferase. J Biol Chem. 1963 Jul;238:2509–2517. [PubMed] [Google Scholar]
  7. FRITZ I. B., YUE K. T. LONG-CHAIN CARNITINE ACYLTRANSFERASE AND THE ROLE OF ACYLCARNITINE DERIVATIVES IN THE CATALYTIC INCREASE OF FATTY ACID OXIDATION INDUCED BY CARNITINE. J Lipid Res. 1963 Jul;4:279–288. [PubMed] [Google Scholar]
  8. Fritz I. B., Marquis N. R. The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1226–1233. doi: 10.1073/pnas.54.4.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haddock B. A., Yates D. W., Garland P. B. The localization of some coenzyme A-dependent enzymes in rat liver mitochondria. Biochem J. 1970 Sep;119(3):565–573. doi: 10.1042/bj1190565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoppel C. L., Tomec R. J. Carnitine palmityltransferase. Location of two enzymatic activities in rat liver mitochondria. J Biol Chem. 1972 Feb 10;247(3):832–841. [PubMed] [Google Scholar]
  11. Levitsky D. O., Skulachev V. P. Carnitine: the carrier transporting fatty acyls into mitochondria by means of an electrochemical gradient of H + . Biochim Biophys Acta. 1972 Jul 12;275(1):33–50. doi: 10.1016/0005-2728(72)90022-9. [DOI] [PubMed] [Google Scholar]
  12. Norum K. R., Bremer J. The localization of acyl coenzyme A-carnitine acyltransferases in rat liver cells. J Biol Chem. 1967 Feb 10;242(3):407–411. [PubMed] [Google Scholar]
  13. Pande S. V., Blanchaer M. C. Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem. 1971 Jan 25;246(2):402–411. [PubMed] [Google Scholar]
  14. Pande S. V. On rate-controlling factors of long chain fatty acid oxidation. J Biol Chem. 1971 Sep 10;246(17):5384–5390. [PubMed] [Google Scholar]
  15. Tubbs P. K., Garland P. B. Membranes and fatty acid metabolism. Br Med Bull. 1968 May;24(2):158–164. doi: 10.1093/oxfordjournals.bmb.a070619. [DOI] [PubMed] [Google Scholar]
  16. West D. W., Chase J. F., Tubbs P. K. The separation and properties of two forms of carnitine palmitoyltransferase from ox liver mitochondria. Biochem Biophys Res Commun. 1971 Mar 5;42(5):912–918. doi: 10.1016/0006-291x(71)90517-1. [DOI] [PubMed] [Google Scholar]
  17. Yates D. W., Garland P. B. Carnitine palmitoyltransferase activities (EC 2.3.1.-) of rat liver mitochondria. Biochem J. 1970 Sep;119(3):547–552. doi: 10.1042/bj1190547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zahlten R. N., Hochberg A. A., Stratman F. W., Lardy H. A. Pyruvate uptake in rat liver mitochondria: Transport or adsorption? FEBS Lett. 1972 Mar;21(1):11–13. doi: 10.1016/0014-5793(72)80150-9. [DOI] [PubMed] [Google Scholar]
  19. Ziegler H. J., Bruckner P., Binon F. O-acylation of dl-carnitine chloride. J Org Chem. 1967 Dec;32(12):3989–3991. doi: 10.1021/jo01287a057. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES