The content is available as a PDF (228.2 KB).
Table.
Superfamily/Class | Protein Fold | Oligomeric state | Polarity | Function | Example Members | |
Helicases | Superfamily I (SF-I) | RecA (tandem pair) | Monomer (dimer/multimer) | 3′-5′ (SF-IA), 5′-3′ (SF-IB) | DNA unwinding, repair and degradation | Bacterial PcrA, Rep, UvrD, RecBCD, Dda; eukaryotic Rrm3, Pif1, Dna2 |
Superfamily II (SF-II) | RecA (tandem pair) | Monomer | 3′-5′ (SF-IIA), 5′-3′ (SF-IIB), some dsDNA translocases | RNA melting, RNA-binding protein displacement; DNA or RNA unwinding; chromatin remodeling; DNA/RNA translocation; melting and migration of Holliday junctions or branched-structures | DExD/H-box proteins (eukaryotic eIF4A, Prp2, Ski2, Vasa, Dpbs; NS3 of hepatitis C); Snf2/SWI proteins (eukaryotic Snf2, ISWI, Rad54, archaeal Hel308); bacterial RecQ, RecG, UvrB | |
Superfamily III (SF-III) | AAA+ | Hexamer (dodecamer?) | 3′-5′ | DNA unwinding/replication | Papilloma virus E1, simian virus 40 Large T-antigen, adeno-associated virus Rep40 | |
Superfamily IV (SF-IV) | RecA | Hexamer (other states?) | 5′-3′ (dsDNA?) | DNA unwinding/replication; ssRNA packaging | Bacterial DnaB; phage T7 gp4, T4 gp41, SPP1 G40P; pRSF1010 RepA; phage Φ 12 P4 | |
Superfamily V (SF-V) | RecA | Hexamer | 5′-3′ | RNA translocation, RNA/DNA heteroduplex unwinding; transcription termination | Bacterial Rho | |
Superfamily VI (SF-VI) | AAA+ (PS- II clade) | Hexamer (other states?) | 3′-5′ (dsDNA?) | DNA unwinding/replication | Eukaryotic/archaeal MCMs | |
Superfamily VII? (SF-VII | AAA+ (new clade?) | Hexamer | 5′-3′ | Chromatin remodeling | Eukaryotic Tip48/49, Reptin/pontin | |
Translocases | HerA/FtsK | RecA-like | Hexamer (pentamer) | dsDNA or ssDNA | Chromosome partitioning/conjugation; certain viral packaging motors | Bacterial FtsK, SpoIIIE; plasmid TrwB, TraD; podovirus Φ 29 gp16, caudovirus and herpesvirus terminase proteins |
RuvB | AAA+ (HCLR clade) | Hexamer (dodecamer with RuvA protein) | dsDNA | Branch migration | Bacterial RuvB | |
McrB | AAA+ (H2− insert clade) | Heptamer | dsDNA | Type IV restriction enzymes | Bacterial McrB |
Abbreviations
AAA+, ATPases associated with various cellular activities; ASCE, additional strand conserved E; dsDNA, double-stranded DNA; MCMs, minichromosomal maintenance proteins; NSF, N-ethyl maleimide sensitive factor; OB-fold, oligonucleotide/oligosaccharide binding fold; PS-II, pre-sensor II; ssRNA, single-stranded RNA.
Acknowledgments
The author’s work in this area is supported by the NIGMS (GM071747).
Recent reviews
- 1.Pyle AM. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys. 2008;37:317–36. doi: 10.1146/annurev.biophys.37.032807.125908. [DOI] [PubMed] [Google Scholar]
- 2.Lohman TM, Tomko EJ, Wu CG. Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol. 2008;9:391–401. doi: 10.1038/nrm2394. [DOI] [PubMed] [Google Scholar]
- 3.Enemark EJ, Joshua-Tor L. On helicases and other motor proteins. Curr Opin Struct Biol. 2008 doi: 10.1016/j.sbi.2008.01.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23–50. doi: 10.1146/annurev.biochem.76.052305.115300. [DOI] [PubMed] [Google Scholar]
- 5.Gallant P. Control of transcription by Pontin and Reptin. Trends Cell Biol. 2007;17:187–92. doi: 10.1016/j.tcb.2007.02.005. [DOI] [PubMed] [Google Scholar]
- 6.Burroughs AM, Iyer LM, Aravind L. Comparative Genomics and Evolutionary Trajectories of Viral ATP Dependent DNA-Packaging Systems. Gene and Protein Evolution. 2007;3:48–65. doi: 10.1159/000107603. [DOI] [PubMed] [Google Scholar]
- 7.Erzberger JP, Berger JM. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct. 2006;35:93–114. doi: 10.1146/annurev.biophys.35.040405.101933. [DOI] [PubMed] [Google Scholar]
- 8.Durr H, Flaus A, Owen-Hughes T, Hopfner KP. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res. 2006;34:4160–7. doi: 10.1093/nar/gkl540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Mackintosh SG, Raney KD. DNA unwinding and protein displacement by superfamily 1 and superfamily 2 helicases. Nucleic Acids Res. 2006;34:4154–9. doi: 10.1093/nar/gkl501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Patel SS, Donmez I. Mechanisms of helicases. J Biol Chem. 2006;281:18265–8. doi: 10.1074/jbc.R600008200. [DOI] [PubMed] [Google Scholar]