Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Mar;72(3):1171–1174. doi: 10.1073/pnas.72.3.1171

Stimulation of DNA polymerase by factors isolated from Novikoff hepatoma.

G S Probst, D M Stalker, D W Mosbaugh, R R Meyer
PMCID: PMC432488  PMID: 165486

Abstract

Extracts of Novikoff hepatoma cells contain factors capable of stimulating in vitro DNA synthesis several fold. The activity can be resolved into three separate protein peaks on DEAE-Sephadex. Two of these, factors II and III, have been purified and partially characterized. Both factors increase the initial rate of DNA synthesis and allow synthesis to proceed much longer. If either factor is added after synthesis by the DNA polymerase has reached a plateau, resumption of synthesis occurs. The factors appear to have different modes of action or sites of action since they show an additive effect even when a single one is used at saturating conditions. These factors are present in normal rat liver but at a concentration less than 5% of that found in the tumor cells. When tested with several highly purified DNA polymerases (DNA nucleotidyltransferase, EC 2.7.7.7), the factors show a much greater stimulation of homologous, non-mitochondrial enzymes (rat liver nuclear-, rat liver cytoplasmic-, or Novikoff-DNA polymerases) when compared with rat liver or calf liver mitochondrial-, Escherichia coli I-, or sea urchin nuclear-DNA polymerases. The mechanism of action of these factors is not known at present. No enzymatic activity has been associated with factor III. Highly purified, but not homogeneous, preparations of factor II contain low levels of endonuclease; it has not been established whether endonuclease is a contaminant or is responsible for the stimulating activity.

Full text

PDF
1171

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fuchs J. A., Karlström H. O., Warner H. R., Reichard P. Defective gene product in dnaF mutant of Escherichia coli. Nat New Biol. 1972 Jul 19;238(81):69–71. doi: 10.1038/newbio238069a0. [DOI] [PubMed] [Google Scholar]
  2. Gefter M. L., Hirota Y., Kornberg T., Wechsler J. A., Barnoux C. Analysis of DNA polymerases II and 3 in mutants of Escherichia coli thermosensitive for DNA synthesis. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3150–3153. doi: 10.1073/pnas.68.12.3150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gurdon J. B. On the origin and persistence of a cytoplasmic state inducing nuclear DNA synthesis in frogs' eggs. Proc Natl Acad Sci U S A. 1967 Aug;58(2):545–552. doi: 10.1073/pnas.58.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hurwitz J., Wickner S. Involvement of two protein factors and ATP in in vitro DNA synthesis catalyzed by DNA polymerase 3 of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Jan;71(1):6–10. doi: 10.1073/pnas.71.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Johnson R. T., Harris H. DNA synthesis and mitosis in fused cells. II. HeLa-chick erythrocyte heterokaryons. J Cell Sci. 1969 Nov;5(3):625–643. doi: 10.1242/jcs.5.3.625. [DOI] [PubMed] [Google Scholar]
  6. Kornberg T., Gefter M. L. Deoxyribonucleic acid synthesis in cell-free extracts. IV. Purification and catalytic properties of deoxyribonucleic acid polymerase III. J Biol Chem. 1972 Sep 10;247(17):5369–5375. [PubMed] [Google Scholar]
  7. Kornberg T., Gefter M. L. Purification and DNA synthesis in cell-free extracts: properties of DNA polymerase II. Proc Natl Acad Sci U S A. 1971 Apr;68(4):761–764. doi: 10.1073/pnas.68.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Loeb L. A. Purification and properties of deoxyribonucleic acid polymerase from nuclei of sea urchin embryos. J Biol Chem. 1969 Apr 10;244(7):1672–1681. [PubMed] [Google Scholar]
  10. Meyer R. R., Keller S. J. DNA polymerase activity: Factors affecting counting efficiency of radioactive DNA on filter paper discs. Anal Biochem. 1972 Mar;46(1):332–337. doi: 10.1016/0003-2697(72)90424-1. [DOI] [PubMed] [Google Scholar]
  11. Meyer R. R., Simpson M. V. DNA biosynthesis in mitochondria: partial purification of a distinct DNA polymerase from isolated rat liver mitochondria. Proc Natl Acad Sci U S A. 1968 Sep;61(1):130–137. doi: 10.1073/pnas.61.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meyer R. R., Simpson M. V. Deoxyribonucleic acid biosynthesis in mitochondria. Purification and general properties of rat liver mitochondrial deoxyribonucleic acid polymerase. J Biol Chem. 1970 Jul 10;245(13):3426–3435. [PubMed] [Google Scholar]
  13. Paul D., Leffert H., Sato G., Holley R. W. Stimulation of DNA and protein synthesis in fetal-rat liver cells by serum from partially hepatectomized rats. Proc Natl Acad Sci U S A. 1972 Feb;69(2):374–377. doi: 10.1073/pnas.69.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RICHARDSON C. C., SCHILDKRAUT C. L., APOSHIAN H. V., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XIV. FURTHER PURIFICATION AND PROPERTIES OF DEOXYRIBONUCLEIC ACID POLYMERASE OF ESCHERICHIA COLI. J Biol Chem. 1964 Jan;239:222–232. [PubMed] [Google Scholar]
  15. Rutzky L. P., Taylor W. G., Pumper R. W. In vitro stimulation of rat liver cells by homologous partial hepatectomy serum. In Vitro. 1971 Jul-Aug;7(1):1–5. doi: 10.1007/BF02618997. [DOI] [PubMed] [Google Scholar]
  16. Slater J. P., Tamir I., Loeb L. A., Mildvan A. S. The mechanism of Escherichia coli deoxyribonucleic acid polymerase I. Magnetic resonance and kinetic studies of the role of metals. J Biol Chem. 1972 Nov 10;247(21):6784–6794. [PubMed] [Google Scholar]
  17. Tait R. C., Smith D. W. Roles for E. coli DNA polymerases I, II, and 3 in DNA replication. Nature. 1974 May 10;249(453):116–119. doi: 10.1038/249116a0. [DOI] [PubMed] [Google Scholar]
  18. Wechsler J. A., Gross J. D. Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol Gen Genet. 1971;113(3):273–284. doi: 10.1007/BF00339547. [DOI] [PubMed] [Google Scholar]
  19. Wickner S., Berkower I., Wright M., Hurwitz J. Studies on in vitro DNA synthesis: purification of dna C gene product containing dna D activity from Escherichia coli. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2369–2373. doi: 10.1073/pnas.70.8.2369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wickner S., Wright M., Hurwitz J. Association of DNA-dependent and -independent ribonucleoside triphosphatase activities with dnaB gene product of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Mar;71(3):783–787. doi: 10.1073/pnas.71.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wickner S., Wright M., Hurwitz J. Studies on in vitro DNA synthesis. Purification of the dna G gene product from Escherichia coli. Proc Natl Acad Sci U S A. 1973 May;70(5):1613–1618. doi: 10.1073/pnas.70.5.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wickner W., Kornberg A. DNA polymerase 3 star requires ATP to start synthesis on a primed DNA. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3679–3683. doi: 10.1073/pnas.70.12.3679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wickner W., Schekman R., Geider K., Kornberg A. A new form of DNA polymerase 3 and a copolymerase replicate a long, single-stranded primer-template. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1764–1767. doi: 10.1073/pnas.70.6.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wright M., Wickner S., Hurwitz J. Studies on in vitro DNA synthesis. Isolation of DNA B gene product from Escherichia coli. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3120–3124. doi: 10.1073/pnas.70.11.3120. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES