Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Apr;72(4):1325–1329. doi: 10.1073/pnas.72.4.1325

Donnan potential of rabbit skeletal muscle myofibrils I: electrofluorochromometric detection of potential.

S P Scordilis, H Tedeschi, C Edwards
PMCID: PMC432526  PMID: 1055408

Abstract

The fluorescence of the dye CC-6 [(3-hexyl-2-(3-hexyl-2-benzoxazolinylidene)-1-propenyl)-benzoxazolium iodide] has been shown to indicate Donnan potentials in rabbit skeletal muscle myofibrils. These results are in agreement with previously published work in which the potentials were measured with microelectrodes on glycerol-extraced muscle fibers. The magnitude of the Donnan potential of the myofibrils has been shown to be dependent on the state (rigor or relaxed) of the system.

Full text

PDF
1325

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D., David G. B., Nomarski G. The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z Wiss Mikrosk. 1969 Nov;69(4):193–221. [PubMed] [Google Scholar]
  2. Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CONWAY E. J. Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. Physiol Rev. 1957 Jan;37(1):84–132. doi: 10.1152/physrev.1957.37.1.84. [DOI] [PubMed] [Google Scholar]
  4. Cohen L. B., Salzberg B. M., Davila H. V., Ross W. N., Landowne D., Waggoner A. S., Wang C. H. Changes in axon fluorescence during activity: molecular probes of membrane potential. J Membr Biol. 1974;19(1):1–36. doi: 10.1007/BF01869968. [DOI] [PubMed] [Google Scholar]
  5. Collins E. W., Jr, Edwards C. Role of Donnan equilibrium in the resting potentials in glycerol-extracted muscle. Am J Physiol. 1971 Oct;221(4):1130–1133. doi: 10.1152/ajplegacy.1971.221.4.1130. [DOI] [PubMed] [Google Scholar]
  6. Elliott G. F., Rome E. M., Spencer M. A type of contraction hypothesis applicable to all muscles. Nature. 1970 May 2;226(5244):417–420. doi: 10.1038/226417a0. [DOI] [PubMed] [Google Scholar]
  7. Firth D. R., DeFelice L. J. Electrical resistance and volume flow in glass microelectrodes. Can J Physiol Pharmacol. 1971 May;49(5):436–447. doi: 10.1139/y71-053. [DOI] [PubMed] [Google Scholar]
  8. Fortes P. A., Hoffman J. F. The interaction of fluorescent probes with anion permeability pathways of human red cells. J Membr Biol. 1974;16(1):79–100. doi: 10.1007/BF01872408. [DOI] [PubMed] [Google Scholar]
  9. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kominz D. R. Role of swelling in muscle contraction. J Theor Biol. 1971 May;31(2):255–267. doi: 10.1016/0022-5193(71)90186-x. [DOI] [PubMed] [Google Scholar]
  12. LING G., GERARD R. W. The normal membrane potential of frog sartorius fibers. J Cell Physiol. 1949 Dec;34(3):383–396. doi: 10.1002/jcp.1030340304. [DOI] [PubMed] [Google Scholar]
  13. NAYLER W. G., MERRILLEES N. C. SOME OBSERVATIONS ON THE FINE STRUCTURE AND METABOLIC ACTIVITY OF NORMAL AND GLYCERINATED VENTRICULAR MUSCLE OF TOAD. J Cell Biol. 1964 Sep;22:533–550. doi: 10.1083/jcb.22.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pemrick S. M., Edwards C. Differences in the charge distribution of glycerol-extracted muscle fibers in rigor, relaxation, and contraction. J Gen Physiol. 1974 Nov;64(5):551–567. doi: 10.1085/jgp.64.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SZENT-GYORGYI A. Free-energy relations and contraction of actomyosin. Biol Bull. 1949 Apr;96(2):140–161. [PubMed] [Google Scholar]
  16. Schaar P. L., Dowben R. M. Energy transduction in striated muscle. Ann N Y Acad Sci. 1974 Feb 18;227:268–274. doi: 10.1111/j.1749-6632.1974.tb14391.x. [DOI] [PubMed] [Google Scholar]
  17. Sims P. J., Waggoner A. S., Wang C. H., Hoffman J. F. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry. 1974 Jul 30;13(16):3315–3330. doi: 10.1021/bi00713a022. [DOI] [PubMed] [Google Scholar]
  18. Tedeschi H. Mitochondrial membrane potential: evidence from studies with a fluorescent probe. Proc Natl Acad Sci U S A. 1974 Feb;71(2):583–585. doi: 10.1073/pnas.71.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weiss R. M., Lazzara R., Hoffman B. F. Potentials measured from glycerinated cardiac muscle. Nature. 1967 Sep 16;215(5107):1305–1307. doi: 10.1038/2151305a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES