Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Apr;72(4):1436–1440. doi: 10.1073/pnas.72.4.1436

Macromolecular enzymatic product of NAD+ in liver mitochondria.

E Kun, P H Zimber, A C Chang, B Puschendorf, H Grunicke
PMCID: PMC432550  PMID: 165508

Abstract

Rat liver mitochondria contain a Mg2+-requiring system that transfers the ADP-ribose moiety of NAD+ to an acceptor protein. The enzyme system was extracted in a soluble form and the ADP-ribosylated protein product was isolated by hydroxyapatite and Sephadex chromatography. The ADP-ribosylated protein product has a molecular weight of 100,000 and can be dissociated into subunits of 50,000 daltons by sodium dodecyl sulfate gel electrophoresis. Incubation of the isotopically labeled ADP-ribosylated protein with nicotinamide and a mitochondrial extract yields labeled NAD+, indicating apparent reversibility of the reaction. Enzymatic degradation of the ADP-ribosylated protein with snake venom phosphodiesterase liberates AMP and ADP-ribose or its isomer. Identification of these products and reversibility of the reaction show that the ADP-ribose moiety of NAD+ is the molecular species that is transferred to the acceptor protein. A fraction of the protein-bound ADP-ribose appears to be present as an an oligomer. The enzymatic protein-ADP-ribosylating reaction is inhibited by nicotinamide, ADP-ribose, the fluorophosphate of AMP, and picrylsulfonic acid.

Full text

PDF
1436

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamietz P., Bredehorst R., Oldekop M., Hilz H. Nuclear poly (ADPR) and mono (ADPR) residues in tissues with different growth rates. FEBS Lett. 1974 Aug 1;43(3):318–322. doi: 10.1016/0014-5793(74)80670-8. [DOI] [PubMed] [Google Scholar]
  2. Barath Z., Küntzel H. Cooperation of mitochondrial and nuclear genes specifying the mitochondrial genetic apparatus in Neurospora crassa. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1371–1374. doi: 10.1073/pnas.69.6.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burzio L., Koide S. S. A functional role of polyADPR in DNA synthesis. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1013–1020. doi: 10.1016/0006-291x(70)90894-6. [DOI] [PubMed] [Google Scholar]
  4. Gill D. M., Pappenheimer A. M., Jr, Uchida T. Diphtheria toxin, protein synthesis, and the cell. Fed Proc. 1973 Apr;32(4):1508–1515. [PubMed] [Google Scholar]
  5. Goor R. S., Maxwell E. S. A proposed mechanism for ADP ribosylation of aminoacyl transferase II by diphtheria toxin. Cold Spring Harb Symp Quant Biol. 1969;34:609–610. doi: 10.1101/sqb.1969.034.01.070. [DOI] [PubMed] [Google Scholar]
  6. Honjo T., Nishizuka Y., Hayaishi O. Adenosine diphosphoribosylation of aminoacyl transferase II by diphtheria toxin. Cold Spring Harb Symp Quant Biol. 1969;34:603–608. doi: 10.1101/sqb.1969.034.01.069. [DOI] [PubMed] [Google Scholar]
  7. Lin D. C., Kun E. Inhibition of the oxidation of glutamate and isocitrate in liver mitochondria at a specific NADP+-reducing site. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3450–3453. doi: 10.1073/pnas.70.12.3450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nishizuka Y., Ueda K., Yoshihara K., Yamamura H., Takeda M., Hayaishi O. Enzymic adenosine diphosphoribosylation of nuclear proteins. Cold Spring Harb Symp Quant Biol. 1969;34:781–786. doi: 10.1101/sqb.1969.034.01.088. [DOI] [PubMed] [Google Scholar]
  9. Roberts J. H., Stark P., Smulson M. Poly(ADP-ribose): release of template restriction in HeLa cells. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3212–3216. doi: 10.1073/pnas.71.8.3212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Robinson E. A., Henriksen O., Maxwell E. S. Elongation factor 2. Amino acid sequence at the site of adenosine diphosphate ribosylation. J Biol Chem. 1974 Aug 25;249(16):5088–5093. [PubMed] [Google Scholar]
  11. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stone P. R., Shall S. Poly(adenosine diphosphoribose) polymerase in mammalian nuclei. Characterization of the activity in mouse fibroblasts (LS cells). Eur J Biochem. 1973 Sep 21;38(1):146–152. doi: 10.1111/j.1432-1033.1973.tb03044.x. [DOI] [PubMed] [Google Scholar]
  13. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  14. Yoshihara K., Tanigawa Y., Koide S. S. Inhibition of rat liver Ca2+, Mg2+-dependent endonuclease activity by nicotinamide adenine dinucleotide and poly (adenosine diphosphate ribose) synthetase. Biochem Biophys Res Commun. 1974 Jul 24;59(2):658–665. doi: 10.1016/s0006-291x(74)80030-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES