Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Apr;72(4):1501–1504. doi: 10.1073/pnas.72.4.1501

On the question of translocation of heart cAMP-dependent protein kinase.

S L Keely Jr, J D Corbin, C R Park
PMCID: PMC432564  PMID: 165513

Abstract

Rat hearts were perfused with epinephrine and/or 1-methyl-3-isobutylxanthine for 2 min. These agents raised the concentration of cAMP and increased the fraction of cAMP-dependent protein kinase (EC 2.7.1.70) in the active form. However, the content of cAMP-dependent protein kinase in the soluble fraction of homogenates of these hearts was reduced and the amount in the particulate fraction was increased. A similar redistribution was obtained by adding cAMP to homogenates of control hearts. The reduction in soluble protein kinase content was due to apparent binding of the free catalytic subunit of the enzyme to particulate material (12,000 times g pellet) in media of low ionic strength (smaller than 100 mM KCl). The amount bound was, therefore, proportional to the dissociation of the holoenzyme. The binding was not altered by prior boiling or trypsin treatment of the particulate material, but it was prevented or reversed by the addition of 150 mM KCl. The catalytic subunit of the protein kinase from heart also bound to particulate fractions from liver or Escherichia coli and to various denatured proteins. These findings suggest that the protein kinase activity of membranes and particulate fractions has frequently been overestimated, since isolation of particulate materials has usually been carried out at low ionic strength. The data also imply that intracellular translocation of the protein kinase catalytic subunit, at least in heart tissue, is of questionable physiological significance.

Full text

PDF
1501

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen L. J., Walsh D. A. Multiple forms of hepatic adenosine 3':5'-monophosphate dependent protein kinase. Biochemistry. 1971 Sep 14;10(19):3614–3621. doi: 10.1021/bi00795a020. [DOI] [PubMed] [Google Scholar]
  2. Corbin J. D., Keely S. L., Park C. R. The distribution and dissociation of cyclic adenosine 3':5'-monophosphate-dependent protein kinases in adipose, cardiac, and other tissues. J Biol Chem. 1975 Jan 10;250(1):218–225. [PubMed] [Google Scholar]
  3. Jungmann R. A., Hiestand P. C., Schweppe J. S. Mechanism of action of gonadotropin. IV. Cyclic adenosine monophosphate-dependent translocation of ovarian cytoplasmic cyclic adenosine monophosphate-binding protein and protein kinase to nuclear acceptor sites. Endocrinology. 1974 Jan;94(1):168–183. doi: 10.1210/endo-94-1-168. [DOI] [PubMed] [Google Scholar]
  4. Korenman S. G., Bhalla R. C., Sanborn B. M., Stevens R. H. Protein kinase translocation as an early event in the hormonal control of uterine contraction. Science. 1974 Feb 1;183(4123):430–432. doi: 10.1126/science.183.4123.430. [DOI] [PubMed] [Google Scholar]
  5. Krebs E. G. Protein kinases. Curr Top Cell Regul. 1972;5:99–133. [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Langan T. A. Protein kinases and protein kinase substrates. Adv Cyclic Nucleotide Res. 1973;3:99–153. [PubMed] [Google Scholar]
  8. MORGAN H. E., HENDERSON M. J., REGEN D. M., PARK C. R. Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J Biol Chem. 1961 Feb;236:253–261. [PubMed] [Google Scholar]
  9. Means A. R., MacDougall E., Soderling T. R., Corbin J. D. Testicular adenosine 3':5'-monophosphate-dependent protein kinase. Regulation by follicle-stimulating hormone. J Biol Chem. 1974 Feb 25;249(4):1231–1238. [PubMed] [Google Scholar]
  10. Palmer W. K., Castagna M., Walsh D. A. Nuclear protein kinase activity in glucagon-stimulated perfused rat livers. Biochem J. 1974 Nov;143(2):469–471. doi: 10.1042/bj1430469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rubin C. S., Erlichman J., Rosen O. M. Molecular forms and subunit composition of a cyclic adenosine 3',5'-monophosphate-dependent protein kinase purified from bovine heart muscle. J Biol Chem. 1972 Jan 10;247(1):36–44. [PubMed] [Google Scholar]
  12. Soderling T. R., Corbin J. D., Park C. R. Regulation of adenosine 3',5'-monophosphate-dependent protein kinase. II. Hormonal regulation of the adipose tissue enzyme. J Biol Chem. 1973 Mar 10;248(5):1822–1829. [PubMed] [Google Scholar]
  13. Walaas O., Walaas E., Gronnerod O. Hormonal regulation of cyclic-AMP-dependent protein kinase of rat diaphragm by epinephrine and insulin. Eur J Biochem. 1973 Dec 17;40(2):465–477. doi: 10.1111/j.1432-1033.1973.tb03215.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES