Abstract
Analysis of substances involved in light-emitting reactions among bioluminescent coelenterates has revealed a pronounced uniformity in the structural features of initial reactants, i.e., "luciferins" and photo-protein chromophores, as well as the light-emitter product. This product is structurally identical among the different classes of coelenterates: Hydrozoa (the jellyfish, Aequorea), Anthozoa (the sea cactus, Cavernularia; sea pansy, Renilla; and sea pen, Leioptilus), and very likely also the Scyphozoa (the jellyfish, Pelagia). In each of these instances the reaction product, namely, 2-(p-hydroxy-pnenylacetyl)amino-3-benzyl-5-(p-hydroxyphenyl) pyrazine, is the actual light-emitter, whether it occurs in a Ca2+-triggered photoprotein type of luminescence, or in a "luciferin-luciferase" type. The evidence indicates that in certain coelenterates, e.g., Cavernularia, these two types are equally significant, whereas in others (Renilla and Leioptilus) the "luciferin-luciferase" type predominates over the Ca-triggerable photoprotein type, and finally that only the photoprotein type functions in the luciferaseless jellyfish, Aequorea. In all instances investigated, the structure of the light-emitter prior to the luminescence reaction appears to be essentially the same as that of the chromophore of unreacted aequorin. The product of the luminescence reaction is absent in extracts of non luminous species. However, a product very similar to that of luminescent coelenterates occurs also in representatives of other phyla, including the cephalopod molluscs, e.g., the "firefly squid" Watasenia and probably various ctenophores as well.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. M., Charbonneau H., Cormier M. J. Mechanism of calcium induction of Renilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein. Biochemistry. 1974 Mar 12;13(6):1195–1200. doi: 10.1021/bi00703a602. [DOI] [PubMed] [Google Scholar]
- CORMIER M. J., HORI K. STUDIES ON THE BIOLUMINESCENCE OF RENILLA RENIFORMIS. IV. NON-ENZYMATIC ACTIVATION OF RENILLA LUCIFERIN. Biochim Biophys Acta. 1964 Jul 29;88:99–104. [PubMed] [Google Scholar]
- Cormier M. J., Hori K., Karkhanis Y. D., Anderson J. M., Wampler J. E., Morin J. G., Hastings J. W. Evidence for similar biochemical requirements for bioluminescence among the coelenterates. J Cell Physiol. 1973 Apr;81(2):291–297. doi: 10.1002/jcp.1040810218. [DOI] [PubMed] [Google Scholar]
- Cormier M. J., Hori K., Karkhanis Y. D. Studies on the bioluminescence of Renilla reniformis. VII. Conversion of luciferin into luciferyl sulfate by luciferin sulfokinase. Biochemistry. 1970 Mar 3;9(5):1184–1189. doi: 10.1021/bi00807a019. [DOI] [PubMed] [Google Scholar]
- Hori K., Cormier M. J. Structure and chemical synthesis of a biologically active form of renilla (sea pansy) luciferin. Proc Natl Acad Sci U S A. 1973 Jan;70(1):120–123. doi: 10.1073/pnas.70.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hori K., Nakano Y., Cormier M. J. Studies on the bioluminescence of Renilla reniformis. XI. Location of the sulfate group in luciferyl sulfate. Biochim Biophys Acta. 1972 Mar 16;256(3):638–644. doi: 10.1016/0005-2728(72)90199-5. [DOI] [PubMed] [Google Scholar]
- Hori K., Wampler J. E., Matthews J. C., Cormier M. J. Identification of the product excited states during the chemiluminescent and bioluminescent oxidation of Renilla (sea pansy) luciferin and certain of its analogs. Biochemistry. 1973 Oct 23;12(22):4463–4468. doi: 10.1021/bi00746a025. [DOI] [PubMed] [Google Scholar]
- Morin J. G., Hastings J. W. Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J Cell Physiol. 1971 Jun;77(3):305–312. doi: 10.1002/jcp.1040770304. [DOI] [PubMed] [Google Scholar]
- Morise H., Shimomura O., Johnson F. H., Winant J. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry. 1974 Jun 4;13(12):2656–2662. doi: 10.1021/bi00709a028. [DOI] [PubMed] [Google Scholar]
- SHIMOMURA O., JOHNSON F. H., SAIGA Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol. 1962 Jun;59:223–239. doi: 10.1002/jcp.1030590302. [DOI] [PubMed] [Google Scholar]
- Shimomura O., Johnson F. H., Morise H. Mechanism of the luminescent intramolecular reaction of aequorin. Biochemistry. 1974 Jul 30;13(16):3278–3286. doi: 10.1021/bi00713a016. [DOI] [PubMed] [Google Scholar]
- Shimomura O., Johnson F. H. Properties of the bioluminescent protein aequorin. Biochemistry. 1969 Oct;8(10):3991–3997. doi: 10.1021/bi00838a015. [DOI] [PubMed] [Google Scholar]
- Shimomura O., Johnson F. H. Structure of the light-emitting moiety of aequorin. Biochemistry. 1972 Apr 25;11(9):1602–1608. doi: 10.1021/bi00759a009. [DOI] [PubMed] [Google Scholar]
- Ward W. W., Seliger H. H. Properties of mnemiopsin and berovin, calcium-activated photoproteins from the ctenophores Mnemiopsis sp. and Beroë ovata. Biochemistry. 1974 Mar 26;13(7):1500–1510. doi: 10.1021/bi00704a028. [DOI] [PubMed] [Google Scholar]
