Abstract
Highly purified fatty acid synthetases of chicken and rat livers have molecular weights of 500,000 and dissociate in solutions of low ionic strength into subunits of molecular weight 250,000 with loss of synthetase activity. The subunits can be reassociated in phosphate buffer with full restoration of the activity. In the presence of sodium dodecyl sulfate or guanifine-HCl, the synthetases dissociate into polypeptide chains of molecular weight 220,000 as determined by sodium dodecyl sulfate-gel electrophoresis and sedimentation equilibrium. The polypeptide contains the 4-phosphopantetheine group and the [14C]acetyl and [4C]malonyl groups if the synthetases were prelabeled with [14C]acetyl-CoA and [14C]malonyl-CoA. Similar results were obtained with the synthetase from yeast, except the subunit has a molecular weight of 200,000. These observations indicate that the multi-catalytic activities of the synthetases and the acyl carrier protein are associated only with the two polypeptide chains. The findings suggest a novel structural organization for multienzyme complexes.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aune K. C., Timasheff S. N. Dimerization of alpha-chymotrypsin. I. pH dependence in the acid region. Biochemistry. 1971 Apr 27;10(9):1609–1617. doi: 10.1021/bi00785a017. [DOI] [PubMed] [Google Scholar]
- Burton D. N., Haavik A. G., Porter J. W. Comparative studies of the rat and pigeon liver fatty acid synthetases. Arch Biochem Biophys. 1968 Jul;126(1):141–154. doi: 10.1016/0003-9861(68)90568-7. [DOI] [PubMed] [Google Scholar]
- Dunker A. K., Rueckert R. R. Observations on molecular weight determinations on polyacrylamide gel. J Biol Chem. 1969 Sep 25;244(18):5074–5080. [PubMed] [Google Scholar]
- Hade E. P., Tanford C. Isopiestic compositions as a measure of preferential interactions of macromolecules in two-component solvents. Application to proteins in concentrated aqueous cesium chloride and guanidine hydrochloride. J Am Chem Soc. 1967 Sep 13;89(19):5034–5040. doi: 10.1021/ja00995a036. [DOI] [PubMed] [Google Scholar]
- Joshi V. C., Plate C. A., Wakil S. J. Studies on the mechanism of fatty acid synthesis. 23. The acyl binding sites of the pigeon liver fatty acid synthetase. J Biol Chem. 1970 Jun 10;245(11):2857–2867. [PubMed] [Google Scholar]
- Kar E. G., Aune K. C. Analyses of sedimentation equilibrium data. Anal Biochem. 1974 Nov;62(1):1–18. doi: 10.1016/0003-2697(74)90365-0. [DOI] [PubMed] [Google Scholar]
- Kumar S., Muesing R. A., Porter J. W. Conformational changes, inactivation, and dissociation of pigeon liver fatty acid synthetase complex. Effects of ionic strength, pH, and temperature. J Biol Chem. 1972 Aug 10;247(15):4749–4762. [PubMed] [Google Scholar]
- LYNEN F. Biosynthesis of saturated fatty acids. Fed Proc. 1961 Dec;20:941–951. [PubMed] [Google Scholar]
- Lornitzo F. A., Qureshi A. A., Porter J. W. Separation of the half-molecular weight nonidentical subunits of pigeon liver fatty acid synthetase by affinity chromatography. J Biol Chem. 1974 Mar 10;249(5):1654–1656. [PubMed] [Google Scholar]
- Phillips G. T., Nixon J. E., Abramovitz A. S., Porter J. W. Identification of the sites of binding of acetyl and malonyl groups to the pigeon liver fatty acid synthetase complex. Arch Biochem Biophys. 1970 Jun;138(2):357–371. doi: 10.1016/0003-9861(70)90358-9. [DOI] [PubMed] [Google Scholar]
- Qureshi A. A., Lornitzo F. A., Porter J. W. The isolation of acyl carrier protein from the pigeon liver fatty acid synthetase complex1 II. Biochem Biophys Res Commun. 1974 Sep 9;60(1):158–165. doi: 10.1016/0006-291x(74)90186-7. [DOI] [PubMed] [Google Scholar]
- Roncari D. A., Bradshaw R. A., Vagelos P. R. Acyl carrier protein. XIX. Amino acid sequence of liver fatty acid synthetase peptides containing 4'-phosphopantetheine. J Biol Chem. 1972 Oct 10;247(19):6234–6242. [PubMed] [Google Scholar]
- Roncari D. A. Mammalian acyl carrier protein. Dissociation of the acyl carrier protein subunit from dog liver fatty acid synthetase complex. J Biol Chem. 1974 Nov 10;249(21):7035–7037. [PubMed] [Google Scholar]
- Schweizer E., Kniep B., Castorph H., Holzner U. Pantetheine-free mutants of the yeast fatty-acid-synthetase complex. Eur J Biochem. 1973 Nov 15;39(2):353–362. doi: 10.1111/j.1432-1033.1973.tb03133.x. [DOI] [PubMed] [Google Scholar]
- Smith S., Abraham S. Fatty acid synthetase from lactating rat mammary gland. I. Isolation and properties. J Biol Chem. 1970 Jun;245(12):3209–3217. [PubMed] [Google Scholar]
- Vanaman T. C., Wakil S. J., Hill R. L. The complete amino acid sequence of the acyl carrier protein of Escherichia coli. J Biol Chem. 1968 Dec 25;243(24):6420–6431. [PubMed] [Google Scholar]
- Véron M., Falcoz-Kelly F., Cohen G. N. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. The two catalytic activities are carried by two independent regions of the polypeptide chain. Eur J Biochem. 1972 Aug 4;28(4):520–527. doi: 10.1111/j.1432-1033.1972.tb01939.x. [DOI] [PubMed] [Google Scholar]
- Weber K., Kuter D. J. Reversible denaturation of enzymes by sodium dodecyl sulfate. J Biol Chem. 1971 Jul 25;246(14):4504–4509. [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Weiner A. M., Platt T., Weber K. Amino-terminal sequence analysis of proteins purified on a nanomole scale by gel electrophoresis. J Biol Chem. 1972 May 25;247(10):3242–3251. [PubMed] [Google Scholar]
- White R. C., Nelson T. E. Re-evaluation of the subunit structure and molecular weight of rabbit muscle amylo-1,6-glucosidase-4-alpha-glucanotransferase. Biochim Biophys Acta. 1974 Sep 13;365(1):274–280. doi: 10.1016/0005-2795(74)90271-2. [DOI] [PubMed] [Google Scholar]
- Willecke K., Ritter E., Lynen F. Isolation of an acyl carrier protein component from the multienzyme complex of yeast fatty acid synthetase. Eur J Biochem. 1969 Apr;8(4):503–509. doi: 10.1111/j.1432-1033.1969.tb00555.x. [DOI] [PubMed] [Google Scholar]
- Yun S. L., Hsu R. Y. Fatty acid synthetase of chicken liver. Reversible dissociation into two nonidentical subcomplexes of similar size. J Biol Chem. 1972 May 10;247(9):2689–2698. [PubMed] [Google Scholar]