Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jun;72(6):2032–2036. doi: 10.1073/pnas.72.6.2032

Mucopolysaccharides associated with nuclei of cultured mammalian cells.

V P Bhavanandan, E A Davidson
PMCID: PMC432686  PMID: 124440

Abstract

Mucopolysaccharides have been isolated, fractionated, and characterized from the nuclei of cultured B16 mouse melanoma cells grown in the presence of (3-H)-glucosamine and (35-S)sulfate. Digestion of the nuclei with DNase followed by Pronase gave a mixture of complex carbohydrates from which the mucopolysaccharides were isolated by precipitation with cetylpyridinium chloride. After fractionation by differential salt extraction and chromatography on controlled pore glass bead columns, the components were identified by chemical and enzymatic methods. The major polysaccharide components were a family of high-molecular-weight chondroitin sulfates with different degrees of sulfation; a minor component has been characterized as heparan sulfate.

Full text

PDF
2032

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPELMANS F., WATTIAUX R., DE DUVE C. Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 1955 Mar;59(3):438–445. doi: 10.1042/bj0590438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alwine J. C., Steinhart W. L., Hill C. W. Transcription of herpes simplex type 1 DNA in nuclei isolated from infected HEp-2 and KB cells. Virology. 1974 Jul;60(1):302–307. doi: 10.1016/0042-6822(74)90390-0. [DOI] [PubMed] [Google Scholar]
  3. Anderson L. E., McClure W. O. An improved scintillation cocktail of high-solubilizing power. Anal Biochem. 1973 Jan;51(1):173–179. doi: 10.1016/0003-2697(73)90465-x. [DOI] [PubMed] [Google Scholar]
  4. Blobel G., Potter V. R. Nuclei from rat liver: isolation method that combines purity with high yield. Science. 1966 Dec 30;154(3757):1662–1665. doi: 10.1126/science.154.3757.1662. [DOI] [PubMed] [Google Scholar]
  5. Bornens M. Letter: Action of heparin on nuclei: solubilization of chromatin enabling the isolation of nuclear membranes. Nature. 1973 Jul 6;244(5410):28–30. doi: 10.1038/244028a0. [DOI] [PubMed] [Google Scholar]
  6. Buck C. A., Fuhrer J. P., Soslau G., Warren L. Membrane glycopeptides from subcellular fractions of control and virus-transformed cells. J Biol Chem. 1974 Mar 10;249(5):1541–1550. [PubMed] [Google Scholar]
  7. Clarke G. D., Shearer M., Ryan P. J. Association of polyanion resistance with tumorigenicity and other properties in BHK-21 cells. Nature. 1974 Dec 6;252(5483):501–503. doi: 10.1038/252501a0. [DOI] [PubMed] [Google Scholar]
  8. Cook R. T., Aikawa M. The effects of heparin on endogenous DNA polymerase activity of rat liver nuclei and chromatin fractions. Exp Cell Res. 1973 Apr;78(2):257–270. doi: 10.1016/0014-4827(73)90068-2. [DOI] [PubMed] [Google Scholar]
  9. Dewald B., Touster O. A new alpha-D-mannosidase occurring in Golgi membranes. J Biol Chem. 1973 Oct 25;248(20):7223–7233. [PubMed] [Google Scholar]
  10. GREEN D. E., MII S., KOHOUT P. M. Studies on the terminal electron transport system. I. Succinic dehydrogenase. J Biol Chem. 1955 Dec;217(2):551–567. [PubMed] [Google Scholar]
  11. GROSSFELD H., MEYER K., GODMAN G., LINKER A. Mucopolysaccharides produced in tissue culture. J Biophys Biochem Cytol. 1957 May 25;3(3):391–396. doi: 10.1083/jcb.3.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamerman D., Todaro G. J., Green H. The production of hyaluronate by spontaneously established cell lines and viral transformed lines of fibroblastic origin. Biochim Biophys Acta. 1965 Nov 1;101(3):343–351. doi: 10.1016/0926-6534(65)90013-8. [DOI] [PubMed] [Google Scholar]
  13. Kawasaki T., Yamashina I. Isolation and characterization of glycopeptides from rat liver nuclear membrane. J Biochem. 1972 Dec;72(6):1517–1525. doi: 10.1093/oxfordjournals.jbchem.a130043. [DOI] [PubMed] [Google Scholar]
  14. Keshgegian A. A., Glick M. C. Glycoproteins associated with nuclei of cells before and after transformation by a ribonucleic acid virus. Biochemistry. 1973 Mar 13;12(6):1221–1226. doi: 10.1021/bi00730a032. [DOI] [PubMed] [Google Scholar]
  15. Kinoshita S. Heparin as a possible initiator of genomic RNA synthesis in early development of sea urchin embryos. Exp Cell Res. 1971 Feb;64(2):403–411. doi: 10.1016/0014-4827(71)90094-2. [DOI] [PubMed] [Google Scholar]
  16. Kraemer P. M. Heparan sulfates of cultured cells. II. Acid-soluble and -precipitable species of different cell lines. Biochemistry. 1971 Apr 13;10(8):1445–1451. doi: 10.1021/bi00784a027. [DOI] [PubMed] [Google Scholar]
  17. LAGUNOFF D., WARREN G. Determination of 2-deoxy-2-sulfoaminohexose content of mucopolysaccharides. Arch Biochem Biophys. 1962 Dec;99:396–400. doi: 10.1016/0003-9861(62)90285-0. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. MAYHEW E., ROE E. M. CHANGES IN THE MITOTIC INDEX OF THE LANDSCHUETZ ASCITES TUMOUR AFTER TREATMENT WITH TUMOUR-INHIBITORY OR NON-INHIBITORY SAMPLES OF GUMTRAGACANTH OR WITH GUM KARAYA. Br J Cancer. 1964 Sep;13:528–536. doi: 10.1038/bjc.1964.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Meezan E., Davidson E. A. Mucopolysaccharide sulfation in chick embryo cartilage. II. Characterization of the endogenous acceptor. J Biol Chem. 1967 Nov 10;242(21):4956–4962. [PubMed] [Google Scholar]
  21. Munro H. N., Fleck A. Recent developments in the measurement of nucleic acids in biological materials. A supplementary review. Analyst. 1966 Feb;91(79):78–88. doi: 10.1039/an9669100078. [DOI] [PubMed] [Google Scholar]
  22. PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robbins E., Fant J., Norton W. Intracellular iron-binding macromolecules in HeLa cells. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3708–3712. doi: 10.1073/pnas.69.12.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
  25. Sakiyama H., Burge B. W. Comparative studies of the carbohydrate-containing components of 3T3 and simian virus 40 transformed 3T3 mouse fibroblasts. Biochemistry. 1972 Apr 11;11(8):1366–1377. doi: 10.1021/bi00758a007. [DOI] [PubMed] [Google Scholar]
  26. Sato C., Banks J., Horst P., Kreider J. W., Davidson E. A. Polysaccharide production by cultured B-16 mouse melanoma cells. Biochemistry. 1974 Mar 12;13(6):1233–1241. doi: 10.1021/bi00703a028. [DOI] [PubMed] [Google Scholar]
  27. Satoh C., Duff R., Rapp F., Davidson E. A. Production of mucopolysaccharides by normal and transformed cells. Proc Natl Acad Sci U S A. 1973 Jan;70(1):54–56. doi: 10.1073/pnas.70.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES